Image classification

16-385 Computer Vision
hitp://16385.courses.cs.cmu.edu/ Fall 2020, Lecture 17 & 18



Overview of today's lecture

* [ntroduction to learning-based vision.
* Image classification.

« Bag-of-words.

« K-means clustering.

« (lassification.

« K nearest neighbors.

« Naive Bayes.

« Support vector machine.



Slide credits

Most of these slides were adapted from:
« Kris Kitani (16-385, Spring 2017).
* Noah Snavely (Cornell University).

« Fei-Fei Li (Stanford University).



Course overview

. Image processing.

. Geometry-based vision.

. Physics-based vision.

. Learning-based vision.

. Dealing with motion.

Lectures 1 -7
See also 18-793: Image and Video Processing

Lectures 7 — 13
See also 16-822: Geometry-based Methods in
Vision

Lectures 14 — 17
See also 16-823: Physics-based Methods in Vision
See also 15-463: Computational Photography

We are starting this part now



What do we mean by learning-
based vision or ‘semantic vision’?
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Object recognition
s it really so hard?

Find the chair in this image Output of normalized correlation




Object recognition
s it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

A “popular method is that of template matching, by point to point correlation of a model
pattern with the image pattern. These techniques are inadequate for three-dimensional

scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation
of parts.” Nivatia & Binford, 1977.



And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422



Why is this hard?
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Challenge: variable viewpoint

Michelangelo 1475-1564



Challenge: variable illumination

image credit: J. Koenderink



and small things

from Apple.

(Actual size)

Challenge: scale
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Challenge:
Occlusion

Magritte, 1957
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Challenge: background clutter

Kilmeny Niland. 1995




@

' . 8 : . '..
, ~ o > :
)4 6]@@;@ '
o *) 9 3 y
: “ 2, ; N P -

3 ~—Cha|lenge Background clutter



Challenge: intra-class variations

Svetlana Lazebnik



Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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Image Classification: Problem
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Data-driven approach

* Collect a database of images with labels
* Use ML to train an image classifier
* Evaluate the classifier on test images

Example training set

mug




Bag of words



What object do these parts belong to?




Some local feature are
very informative

a collection of local features

(bag-of-features)

e deals well with occlusion
e Sscale invariant
e rotation invariant



(not so0) crazy assumption

spatial information of local features
can be ignored for object recognition (i.e., verification)



bag of features

bag of features

Parts-and-shape model

class Zhang et al. (2005) | Willamowski et al. (2004) | Fergus et al. (2003)
airplanes 98.8 97.1 90.2
cars (rear) 98.3 98.6 90.3
cars (side) 95.0 87.3 88.5
faces 100 99.3 96.4
motorbikes 98.5 98.0 92.5
spotted cats 97.0 — 90.0

Works pretty well for image-level classification

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)




Bag-of-features

represent a data item (document, texture, image)
as a histogram over features

an old 1dea

(e.q., texture recognition and information retrieval)
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Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation, 1979
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Sunday, December 22,2013

DARPA Selects Carnegie Me

The Tartan Rescue Team
from Camegie M.eﬂon
University's I‘_lanox"mI
Robotics Engineenng
Center ranked third among
teams competing i the
Defense Advanced
Research Projects Agency
(DARPA) Robotics
Challenge  Trials this
weekend in Homestead,
Fla, and was selected by

funding to prepare for next
December's finals. The
tean's fourlimbed CMU
Highly Intelligent Mobile
Platform, or CHIMP, ropot
scored 18 out of apossible
32 points  duang the
two-day trials. It
demonstrated its ability to
perform such tasks as
removing debiis, cutting &
hole through a wall and
closing a sesies of valves.
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the agency asone of eight

teams eligible for DARPA

Monday, Janay 20, 2014

Bio-Inspired Roboﬁc Device

PITTSBURGH—A
wearable  device  that
mimics the muscles,
tendons and ligaments of
the lower leg could aid in
the  rehabilitation  of
patients with anlde-foot
disorders such as drop
foot, said Yong-Lae Park,
an assistant professor of
robotics  at Camegie
Mellon University. Park,
working with collaborators
at Harvard University, the
Un%versity of Southem
California,  MIT ' and

active ' ‘orthotic * device
using soft plastics and
composite materials,
mstead of g ngid
exoskeleton, | The  soft
materials, combined with

Pneumatic artificial
xpuscles (PAMS),
lightweight sensors and
advanced control

software, made it possible
for the robotic device to
achieve natural motions in
the ankle.

http://www.fodey.com/generators/newspaper/snippet.asp
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A document (datapoint) is a vector of counts over each word (feature

— w1.d w2.d) - wT d

counts the number of occurrences just a histogram over words
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but not all words are created equal




TF-IDF

Term Frequency Inverse Document Frequency
vg = [n(wi,q) n(wz2,d) - n(wrad)l

weigh each word by a heuristic

vqg = [n(w1 4)a1 n(wag)as - n(wrq)ar)

iInverse document

term frequency
frequency

n(wi,a)ai = nwi,aq) log { S 1[&- € d'| }

(down-weights common terms)




Standard BOW p|pe\|ne

(for image classification



Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWSs



Dictionary Learning:
Learn Visual Words using clustering

1. extract features (e.g., SIFT) from images




Dictionary Learning:
Learn Visual Words using clustering

2. Learn visual dictionary (e.g., K-means clustering)




What kinds of features can we extract?



e Regular grid
e Vogel & Schiele, 2003
e Fei-Fei & Perona, 2005

e |nterest point detector
e Csurka et al. 2004
e Fei-Fei & Perona, 2005
e Sivic et al. 2005

e Other methods
e Random sampling (Vidal-Naquet &

R, Py —-, :
3 : B
Ullman, 2092) ST ‘Q_ﬁ!_ﬁ“_. —
e Segmentation-based patches (Barnard  [[imssNpe-
et al. 2003) ——
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Compute SIFT
descriptor Normalize patch

[Lowe’99]

Detect patches
[Mikojaczyk and Schmid "02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, ‘03]






How do we learn the dictionary?
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Clustering




Visual vocabulary

Clustering




K-means clustering



1. Select initial
centroids at random



v

2. Assign each object to

the cluster with the
nearest centroid.

1. Select initial
centroids at random
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1. Select initial 2. Assign each object to

the cluster with the
nearest centroid.

centroids at random

3. Compute each centroid as the
mean of the objects assigned to
it (go to 2)



1. Select initial
centroids at random
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3. Compute each centroid as the
mean of the objects assigned to
it (go to 2)

v
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2. Assign each object to

the cluster with the
nearest centroid.

2. Assign each object to
the cluster with the
nearest centroid.



v

2. Assign each object to

the cluster with the
nearest centroid.

1. Select initial
centroids at random

v

‘
W\

O
3. Compute each centroid as the 2. Assign each object to
mean of the objects assigned to the cluster with the
it (go to 2) nearest centroid.

Repeat previous 2 steps until no change



K-means Clustering

Given k:
l.Select initial centroids at random.

2.Assign each object to the cluster with the nearest
centroid.

3.Compute each centroid as the mean of the objects
assigned to 1it.

4 .Repeat previous 2 steps until no change.



From what data should | learn the dictionary?

e Dictionary can be learned on separate training
set

« Provided the training set is sufficiently
representative, the dictionary will be “universal”



Example visual dictionary
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Example dictionary
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Another dictionary
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Encode:
build Bags-of-Words (BOW) vectors
for each image



=1 1. Quantization: image features gets
associated to a visual word (nearest
cluster center)

Encode:
build Bags-of-Words (BOW) vectors
for each image

] o
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Encode:
build Bags-of-Words (BOW) vectors

for each image 2. Histogram: count the
number of visual word

OCCUrrences




frequency

TLNENRLES B

codewords



Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWSs






K nearest neighbors



Distribution of data from two classes
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Distribution of data from two classes
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Which class does q belong too?



Distribution of data from two classes



K-Nearest Neighbor (KNN) Classifier

For a given query point g,
assign the class of the
nearest neighbor

Compute the k nearest
neighbors and assign the
class by majority vote.

o -
K= 1 A

Off -

- n
k=3 |O -

Non-parametric pattern

classification approach

Consider a two class problem
where each sample consists of two
measurements (x,y).
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Nearest Neighbor Is competitive

NVNFTErSggONNTCoTsT-LYoavIOm
NX—BFR®OOT-QERNXxTr IO ®
NMOONXCTTVN—=DWVIMmINMNNN
~=~NQOI v oNTYES~IQ0S
— 0O ~—09 00— e FId>
N QAVHEFOANOWVN c—— () o

kTN ~le AR T—0A T
NMNMANARTOHOO NI FTONIS
OO SN——>N) =~—JTF
COoR~—ANdD~PyY —FOANT™~OM
NONMNTNGTONITEPLOD >~
TULMIQs-=O0O—-MIOVN~X ~
RS r—— TN -
OLS>ADRNK =T ORANSTANC
ALY esNN~a N~ NV
TYANOITM—=FTNSIITrMI FN W ~
VIO T NP0~ w9 M
N OCTOORNN—bLIS~m~—~
mFMAhpPphado /Ny~ olnen
W~ PrALONNYO X Frndd
NS —r VO NA VO o >
TS QUM ITVNN AT R Y
QT LMTTOUVPsargF-—o
NOVOOIAT~TRETAFTINAM~Q

TSI N —=QOT[TOdIMO0D

FOLFEOrTeRQnNA & e
A=WV ATLLNOND O©w T — M~
~—wLWnwrenPanNaQrF~NN
—~rTNUMNSE—=0O ™~~~ —
P~ —~TFT~Ur N\ o TSNV
NAT=d—008 N O — <D\
SR ONITr—QaN—c Q0
MM —= 90X AN — =D A Hhoe —
PANMN=2rIO0F+FCQON ~PeN oo
O3 mr—OMor—~XDOJ »N— o
QOO NS VIOPIIN -~
DOV b—0dIYQTYToobemos
SRIIXYRAON—=§ TI o) N
PO SNAN—-—ND s 0w @ oV
VO MNEeTOTAMXXNQO TV
INT—=TRO>OECIMOID MmN
ROVPJONT O TLsVINKPEa eY)
N0V - NI ~JVaISrrJoen
T~~~ ORI N~ANON~) 4+ ™
ArHeohlh—wvaTg—-—mmhwsd
Yl OWNTI M~ S ocuxXtm N
VAECEDOSI~XT MmN e O

S ~PIO0MPQAITMNOwE»NONY

E~TRoNN"XXOXhLeA—<ML
TA—=~SNEVESNS —FTOMN D~
WFEFMmorweDooe—O0Q0 W™D —
Q—smceO—ocr~r&kvn—cr-in—
ArecRADO>cTOPLI—O
MOYMA>TOrNE=~-MO b m
NOMMAPI O r-NOONOYI 3+~
QTP OIMRINS Qe 3
ONRN~2mMm\N=-Vtes—nrnrNrd
VIO VNNMNTTerTo~NS ~
VATLEIGOORY e~ s Q
OV AVNITI <~V IM N0 h D
M- WVWIFeII~0 T SOTIMNIT OoN
~~3INMrOTreomQQohLN ot
r—oheer—ot~her>e—-—Q &
N D) MG~ RSO mMms
QOT LMY VEIXTIOGTH O ~o0o~
o rnrtrnd -9 =X r

12.0

Test Error Rate (%)

Linear classifier (1-layer NN)

5.0
2.4

K-nearest-neighbors, Euclidean

ition

t Recogn

igi

MNIST D

K-nearest-neighbors, Euclidean, deskewed

Handwritten digits

~ M~ O <~
~ ©
o
©
— O
W.m
| -
°5 2
O © G5
O —
cECT
8 X OE
2 D o 5
@®
0595
S o= 8
Ou%.+ <
S8
. X o
NNOM
Z Z O S
L O
¥ ¥ «— O
4
00)
Ne
[l %
© 35
[ S
n m O
O © —=
2 %e
(@)

v}
.m.ms
d.lt
X © 3
o + +

o O
%OO
3 ﬂwﬂN
QO O O
Al © +

4.7

2-layer NN, 300 hidden units

1.6
0.8
0.7

2-layer NN, 300 HU, [deskewing]

LeNet-5, [distortions]

Yann LeCunn

Boosted LeNet-4, [distortions]



What is the best distance metric between data points?
e [ypically Euclidean distance
e Locality sensitive distance metrics

e Important to normalize.
Dimensions have different scales

How many K?
e [ypically k=1 is good

« Cross-validation (try different k!)



Distance metrics
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Choice of distance metric

* Hyperparameter

L1 (Manhattan) distance |2 (Euclidean) distance
hily 1) =) _IIF — 1 dy(I, Ir) = \"""Z (17 - 13)°

- Two most commonly used special cases of p-norm

1

'CBHp:(‘Q;l’p_*_..._._mn’P)? p21,:1:ElR"



CIFAR-10 and NN results

Example dataset: CIFAR-10
10 labels

50,000 training images
10,000 test images.

For every test image (first column),
examples of nearest neighbors in rows
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k-nearest neighbor

Find the k closest points from training data
Labels of the k points “vote” to classify

the data NN classifier




Hyperparameters

What is the best distance to use?
What is the best value of k to use?

i.e., how do we set the hyperparameters?

Very problem-dependent
Must try them all and see what works best



Try out what hyperparameters work best on test set.

|

train data

test data




Try out what hyperparameters work best on test set.

|

train data test data

VERY BAD IDEA! The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.



Validation

train data test data

v

fold 1 fold 2 fold 3 fold 4 fold 5 test data

|

use to tune hyperparameters
evaluate on test set ONCE at the end



Cross-validation

train data test data

v

fold 1 fold 2 fold 3 fold 4 fold 5 test data

~2

Cross-validation
cycle through the choice of which fold
Is the validation fold, average results.



Cross-validation on k

Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome.

The line goes

through the mean, bars
indicated standard
deviation

Cross-validation accuracy

026

0.25

(Seems that k ~= 7 works best
024 4 1 : 1 for this data)

-20 0 20 40 60 80 100 120




How to pick hyperparameters?

Methodology
— Train and test
— Train, validate, test

Train for original model
Validate to find hyperparameters
Test to understand generalizability



Pros
« simple yet effective

Cons
« search is expensive (can be sped-up)
« storage requirements

o difficulties with high-dimensional data



KNN -- Complexity and Storage

N training images, M test images

Training: O(1)
Testing: O(MN)

Hmm...

— Normally need the opposite
— Slow training (ok), fast testing (necessary)



k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be
very unintuitive

original

messed up darkened

(all 3 images have same L2 distance to the one on the left)



Nalve Bayes



Distribution of data from two classes
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Which class does q belong too?



Distribution of data from two classes

o e Learn parametric model for each class
o « Compute probability of query



This Is called the posterior.
the probability of a class z given the observed features X

p(2|X)

For classification, z is a

discrete random variable
(e.g., car, person, building)

X IS a set of observed features
(e.qg., features from a single image)

(it's a function that returns a single probability value)



This Is called the posterior:
the probability of a class z given the observed features X

p(z|le,...,xN)

For classification, z is a

discrete random variable
(e.g., car, person, building)

Each x is an observed feature
(e.qg., visual words)

(it's a function that returns a single probability value)



The posterior can be decomposed according to
Bayes’ Rule

p(B|A)p(A)
A|B) =
p(posJerior) p(B)

INn our context...

p(x1,...,xN|2)p(2)

Zlxey,...,xN) =
p(z|a, ) p(x1,...,ZN)



The naive Bayes' classitier is solving this optimization

z = argmax p(z|X)
ZEZ

MAP (maximum a posteriori) estimate

z = arg 1mnax P Bayes’ Rule

Remove constants

¢ = arg max p(X|z)p(z)
ZEZ ,

!S
To optimize this...we need to compute this

Compute the likelihood...



A naive Bayes’ classifier assumes all features are
conditionally independent

p(x1, ..., N|2) = p(x1|2)p(T2, . . ., TN|2)

= p(x1|2)p(x2

= p(x1|z)p(x2

Recall: l

p(z,y) = p(z|y)p(y)

z)p(xs,...,TN|2)
z)- - p(xN|2)

@

p(z,y) = p(z)p(y) )




To compute the MAP estimate

Given (1) a set of known parameters (2) observations

p(z) plx|z) {x1,29,...,2N}

Compute which z has the largest probability

Z = arg max p(z Hp (T,|2)
ZEZ
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- The Newsp

Sunday, Decemnber 22, 2013

DARPA Selects Carnegie Me

The Tartan Rescue Team
from Camegie Mellon
University's National
Robotics Engineenng
Center ranked third among
teams competing i the
Defense Advanced
Research Projects Agency
(DARPA) Robotics
Challenge  Trials  this
weekend in Homestead,
Fla, and was selected by
the agency as one of eight
teams eligible for DARPA

funding to prepare for next
December's finals. The
team's four-limbed CMU
Highly Intelligent Mobile
Platform, or CHIMP, robot
scored 18 out of apossible
32  points  dunng the
two-day trials. It
demonstrated its ability to
petform such tasks as
removing debris, cutting a
hole through a wall and
closing a series of valves.

Ren
folli
mp

The
thal
rela
the
beh
of a
exp:
inli
its

beh

count 1 6 2 1 0 0 0 1
CHIMP =~ CMU bio
0.18 0.09 0.0 0.0 0.0

soft ankle sensor

0.09

robot
0.55

Tartan
0.09

word

p(xIz)

p(X|2) = | [ p(zy]2)C+)

(0.09)(0.55)° - - - (0.09)*

Numbers get really small so use log probabilities

log p(X |z = ‘grandchallenge’) = —2.42 — 3.68 — 3.43 — 2.42 — 0.07 — 0.07 — 0.07 — 2.42 = —14.58

log p(X|z = ‘softrobot’) = —7.63 — 9.37 — 15.18 — 2.97 — 0.02 — 0.01 — 0.02 — 2.27 = —37.48

* typically add pseudo-counts (0.001)
** this is an example for computing the likelihood, need to multiply times prior to get posterior
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DARPA Selects Carnegie Me

The Tartan Rescue Team
from Camegie Mellon
University's National
Robotics Engineening
Center ranked third among
teams competing i the
Defense Advanced
Research Projects Agency
(DARPA) Robotics
Challenge  Trals  this
weekend in Homestead,

funding to prepare for next
December's finals. The
tean's fourlimbed CMU
Highly Intelligent Mobile
Platform, or CHIMP, robot
scored 18 out of apossible
32  points dunng the
two-day trials. . It
demonstrated its ability to
perform  such tasks as
removing debris, cutting a

Ren
folly
imp
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beh
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exp:

count 1 6 2 1 0 0

0

1

Fla, and was selected by hole through a wall and il
the agency asone of eight closing a series of valves.  its
teams eligible for DARPA beh

word CHIMP CMU bio soft
p(xlz) 0.18 0.09 0.0 0.0 0.0

robot ankle

0.55

Tartan
0.09

Sensor

0.09

log p(X|z=grand challenge) = - 14.58
log p(X|z=bio inspired) = - 37.48

C

~ Tartan Tim

Monday, Jumary 20, 2014

. . . .
Bio-Inspired Robotic Device
PITTSBURGH—A  soft, BioSensics, developed an Ren
wearable  device that active ' ‘orthotic device folli
mimics  the  muscles, wusing soft plastics and imp
tendons and ligaments of composite | materials,
the lower leg could aid in instead of a ngid The
the  rehabilitation  of exoskeleton.  The  soft thal
patients with ankle-foot materials, combined with rela

disorders such as drop pneumatic artificial  the
foot, said Yong-Lae Park muscles (PAMs), beh
an assistant professor of lightweight sensors and ofa
robotics  at = Camegle advanced control exp: co u nt O 4 O 1 4 5 3 2

Mellon University. Patk, software, made it possible inli
working with collaborators for the robotic device to its

at Harvard University, the achieve natural motions in  beh
University of Southem the ankle. con
California, MIT and orv

Tartan CHIMP
p(xlz) 0.0 0.21 0.0

CMU bio soft
0.05 0.21 0.26

ankle
0.16 0.11

word robot sensor

http://www.fodey.com/generators/newspaper/snippet.asp

log p(X|z=grand challenge) = - 94.06
log p(X|z=bio inspired) = - 32.41

* typically add pseudo-counts (0.001)
** this is an example for computing the likelihood, need to multiply times prior to get posterior



Support Vector Machine



Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
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Score function

class scores
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Linear Classifier

define a score function data (histogram)

/

f(wzaWab) =Wz +b

; \

“weights”

ublas VeCtoru
class scores

uparametersu



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Convert image to histogram representation

input image

i B

3.2

-96.8

02 |-05| 01 | 20 5l6

15 | 1.3 | 2.1 | 0.0 231
0 |025| 02 | -03 24
|14 2

-1.2

437.9

61.95

f(mi; W7 b)

cat score

dog score

ship score



Distribution of data from two classes
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Which class does q belong too?



Distribution of data from two classes




-Irst we need to understand hyperplanes...



Hyperplanes (lines) in 2D

w11+ woxe +b =0

a line can be written as
dot product plus a bias

w-x+b=0

w € R?

another version, add a weight 1
and push the bias inside

w-x=0

w e R3



Hyperplanes (lines) in 2D

w-x+b=0 (offset/biasoutside) w -ax = () (offset/bias inside)

w11 + wexe +b =0

\:62:
N &




Hyperplanes (lines) in 2D

w-x+b=0 (offset/biasoutside) w -ax = () (offset/bias inside)

w1x1 + woxe +b=20

Important property:
Free to choose any normalization of w

The line

w1x1 + woxe +b =0

and the line

)\(’wlwl + WoXo + b) =0

define the same line




What is the distance
to origin?

(hint: use normal form)

AAAAAAAAAAAAAAAAAAA

vvvvvvvvvvvvvvvvv

w-x+b=0



w-x+b=0

scale w-x+b=0 by ———
ol

you get the normal form
xcosh + ysinf = p

|
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distance
between two
parallel lines Hw H

AAAAAAAAAAAAAAAAAAA

w-x+b=—1

vvvvvvvvvvvvvvvvv

w-x+b=0

Difference of distance to origin

b+ 1 b 1

Jwl|  Jw|  wl|




Now we can go to 3D ...

Hyperplanes (planes) in 3D

W what are the dimensions of
this vector?

w-x+b=0

What happens if you change b?



Hyperplanes (planes) in 3D

w

4




Hyperplanes (planes) in 3D

What’s the distance
between these
‘#’

parallel planes? /

w-xr+b=-1

w-x+b=0

w-x+b=1



Hyperplanes (planes) in 3D

ij_H/‘"’
\

\ w-x+b=-1
\ w-z+b=0

w-x+b=1
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What's the best w?

O

O
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What's the best w?

O
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What's the best w?

O




What's the best w?

O




What's the best w?

O




What's the best w?

Intuitively, the line that is the
farthest from all interior points



What's the best w?

Maximum Margin solution:
most stable to perturbations of data



What's the best w?

/‘ support vectors

Want a hyperplane that is far away from ‘inner points’



Find hyperplane w such that ...

.
.*

.

w-x+b=

.

.

w-Tr+b=—

the gap between parallel hyperplanes m IS maximized



Can be formulated as a maximization problem

What does this constraint mean? k
- |abel of the data point

Why is it +1 and -17



Can be formulated as a maximization problem

Equwalently, Where did the 2 go?

What happened to the labels?




‘Primal formulation’ of a linear SVM

min ||w|
w

Objective Function

subject to y;(w-x; +b) >1 for i =1,...,N

Constraints

This is a convex quadratic programming (QP) problem

(a unigque solution exists)



'soft” margin



What's the best w?



What's the best w?

(@) © Very narrow margin

oo 9 o



Separating cats and dogs

o 0 O©
O O © O
O o Very narrow margin
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What's the best w?

o O
o ©O O
© o0o 0 °
O |
Qo o O Very narrow margin
O
o 0 O Oo O
o © ¢
© o o
o ©

Intuitively, we should allow for some misclassification if
we can get more robust classitication



What's the best w?

Trade-off between the MARGIN and the MISTAKES
(might be a better solution)



Adding slack variables &; > 0

misclassifie
point




'soft” margin

objective subject to



'soft” margin

objective subject to

The slack variable allows for mistakes,
‘as long as the inverse margin is minimized.



'soft” margin

objective subject to

o Every constraint can be satisfied if slack is large
« C is aregularization parameter

« Small C: ignore constraints (larger margin)

e Big C: constraints (small margin)
« Still QP problem (unique solution)



C = Infinity hard margin

feature y

-0.2
feature x

Comment YWindow

SWM (L1) by Sequential Minimal Optimizer
Kernel: linear (-), C: Inf
Kernel evaluations: 971

>

Mumber of Support Yectors: 3
Margin: 0.0966
Training error: 0.00% v




feature y

10 soft margin

-1 -0.8 0.6 -0.4 -0.2 0

feature %

Comment YWindow

SWM (L1) by Sequential Minimal Optimizer
Kernel: linear (-), C: 10.0000

Kernel evaluations: 2645

Mumber of Support Yectors: 4

Margin: 0.2265

Training error: 3.70%

0.8




