Image classification

16-385 Computer Vision http://16385.courses.cs.cmu.edu/ Fall 2020, Lecture 17 & 18

Overview of today's lecture

- Introduction to learning-based vision.
- Image classification.
- Bag-of-words.
- K-means clustering.
- Classification.
- K nearest neighbors.
- Naïve Bayes.
- Support vector machine.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).
- Noah Snavely (Cornell University).
- Fei-Fei Li (Stanford University).

Course overview

1. Image processing.

Lectures 1 – 7 See also 18-793: Image and Video Processing

2. Geometry-based vision.

Lectures 7 – 13 See also 16-822: Geometry-based Methods in Vision

3. Physics-based vision.

Lectures 14 – 17 See also 16-823: Physics-based Methods in Vision See also 15-463: Computational Photography

- 4. Learning-based vision. ←
- We are starting this part now

5. Dealing with motion.

What do we mean by learningbased vision or 'semantic vision'?

Is this a street light? (Recognition / classification)

Is that Potala palace? (Identification)

What type of scene is it? (Scene categorization)

Outdoor

Marketplace

City

- AUT

What are these people doing? (Activity / event recognition)

AUT

Object recognition Is it really so hard?

Find the chair in this image

Output of normalized correlation

This is a chair

Object recognition Is it really so hard?

Find the chair in this image

Pretty much garbage Simple template matching is not going to make it

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

Why is this hard?

Variability:

Camera position Illumination Shape parameters

Challenge: variable viewpoint

Michelangelo 1475-1564

Challenge: variable illumination

image credit: J. Koenderink

(Actual size)

6 G F

Challenge: scale

Challenge: deformation

Deformation

Challenge: Occlusion

Magritte, 1957

Occlusion

Challenge: background clutter

Kilmeny Niland. 1995

Challenge: intra-class variations

Svetlana Lazebnik

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Image Classification: Problem

Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

Example training set

Bag of words

What object do these parts belong to?

Some local feature are very informative

a collection of local features (bag-of-features)

- deals well with occlusion
- scale invariant
- rotation invariant

An object as

(not so) crazy assumption

spatial information of local features can be ignored for object recognition (i.e., verification)

CalTech6 dataset

class	bag of features	bag of features	Parts-and-shape model
	Zhang et al. (2005)	Willamowski et al. (2004)	Fergus et al. (2003)
airplanes	98.8	97.1	90.2
cars (rear)	98.3	98.6	90.3
cars (side)	95.0	87.3	88.5
faces	100	99.3	96.4
motorbikes	98.5	98.0	92.5
spotted cats	97.0		90.0

Works pretty well for image-level classification

Bag-of-features

represent a data item (document, texture, image) as a histogram over features

an old idea

(e.g., texture recognition and information retrieval)

Texture recognition

Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation, 1979

The Newspi								
Sunday, December 22, 2013								
DARPA Selects Carnegie MeThe Tartan Rescue Team from Carnegie Mellon University's National Robotics Engineening Center ranked third among teams competing in the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge Trials thisfunding to prepare for next December's finals. The December's finals. The team's four-limbed CMU Highly Intelligent Mobile Platform, or CHIMP, robot scored 18 out of a possible 32 points during the team such tasks as of a competing the solutionRen foll imp								
	1	6	2	1	0	0	0	1
	Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor
weekend in Homestead, removing debns, cutting a sig- Fla, and was selected by hole through a wall and in li- the agency as one of eight closing a series of valves.							:	:

D

teams eligible for DARPA

http://www.fodey.com/generators/newspaper/snippet.asp

A document (datapoint) is a vector of counts over each word (feature)

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

 $n(\cdot)$ counts the number of occurrences

What is the similarity between two documents?

A document (datapoint) is a vector of counts over each word (feature)

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

 $n(\cdot)$ counts the number of occurrences

just a histogram over words

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.

$$egin{aligned} d(oldsymbol{v}_i,oldsymbol{v}_j) &= \cos heta \ &= rac{oldsymbol{v}_i \cdot oldsymbol{v}_j}{\|oldsymbol{v}_i\|\|oldsymbol{v}_j\|} \end{aligned}$$

but not all words are created equal

TF-IDF

Term Frequency Inverse Document Frequency

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

weigh each word by a heuristic

$$\boldsymbol{v}_d = [n(w_{1,d})\alpha_1 \quad n(w_{2,d})\alpha_2 \quad \cdots \quad n(w_{T,d})\alpha_T]$$

Standard BOW pipeline

(for image classification)

Dictionary Learning:

Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

Dictionary Learning: Learn Visual Words using clustering

1. extract features (e.g., SIFT) from images

Dictionary Learning: Learn Visual Words using clustering

2. Learn visual dictionary (e.g., K-means clustering)

What kinds of features can we extract?

- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation-based patches (Barnard et al. 2003)

Compute SIFT descriptor

[Lowe'99]

Normalize patch

Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

How do we learn the dictionary?

K-means clustering

1. Select initial centroids at random

1. Select initial centroids at random

2. Assign each object to the cluster with the nearest centroid.

1. Select initial centroids at random

2. Assign each object to the cluster with the nearest centroid.

3. Compute each centroid as the mean of the objects assigned to it (go to 2)

3. Compute each centroid as the mean of the objects assigned to it (go to 2)

2. Assign each object to the cluster with the nearest centroid.

mean of the objects assigned to

it (go to 2)

2. Assign each object to the cluster with the nearest centroid.

Repeat previous 2 steps until no change

K-means Clustering

Given k:

1.Select initial centroids at random.

- 2.Assign each object to the cluster with the nearest centroid.
- 3.Compute each centroid as the mean of the objects assigned to it.

4.Repeat previous 2 steps until no change.

From what data should I learn the dictionary?

- Dictionary can be learned on separate training set
- Provided the training set is sufficiently representative, the dictionary will be "universal"

Example visual dictionary

Example dictionary

Another dictionary

Dictionary Learning: Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

1. Quantization: image features gets associated to a visual word (nearest cluster center)

Encode:

build Bags-of-Words (BOW) vectors for each image

Encode:

build Bags-of-Words (BOW) vectors

for each image

2. Histogram: count the number of visual word occurrences

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

K nearest neighbors

Naïve Bayes

Support Vector Machine

K nearest neighbors

Distribution of data from two classes

Distribution of data from two classes

Which class does q belong too?

Distribution of data from two classes

K-Nearest Neighbor (KNN) Classifier

Non-parametric pattern classification approach

Consider a two class problem where each sample consists of two measurements (x,y).

For a given query point q, assign the class of the nearest neighbor

Compute the k nearest neighbors and assign the class by <u>majority vote</u>.

k = 1 k = 3 k = 3

Nearest Neighbor is competitive

40281508803277364755579284686500876/71127400776386420140578214 2241087634006230)171131099754 ð В Ò .3 a H \mathcal{O} 090/ D ОЧ З ລ δ ч Ζ 4/992/8013613411/560707232572949812/61278000822922799275/34941856283

Test Error Rate (%)

MNIST Digit Recognition

- Handwritten digits
- 28x28 pixel images: d = 784
- 60,000 training samples
- 10,000 test samples

Yann LeCunn

Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskewed	2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1
2-layer NN, 300 hidden units	4.7
2-layer NN, 300 HU, [deskewing]	1.6
LeNet-5, [distortions]	0.8
Boosted LeNet-4, [distortions]	0.7

What is the best distance metric between data points?

- Typically Euclidean distance
- Locality sensitive distance metrics
- Important to normalize.
 Dimensions have different scales

How many K?

- Typically k=1 is good
- Cross-validation (try different k!)

Distance metrics

$$D(oldsymbol{x},oldsymbol{y}) = \sqrt{(x_1-y_1)^2 + \cdots + (x_N-y_N)^2}$$
 Euclidean

$$D(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} = \frac{x_1 y_1 + \dots + x_N y_N}{\sqrt{\sum_n x_n^2} \sqrt{\sum_n y_n^2}}$$
Cosine

$$D(x, y) = \frac{1}{2} \sum_{n} \frac{(x_n - y_n)^2}{(x_n + y_n)}$$

Chi-squared

Choice of distance metric

- Hyperparameter
- L1 (Manhattan) distance $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$ $d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$

- Two most commonly used special cases of p-norm $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}} \quad p \ge 1, x \in \mathbb{R}^n$

CIFAR-10 and NN results

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

airplaneImage: Solution of the soluti

For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

- Find the k closest points from training data
- Labels of the k points "vote" to classify

Hyperparameters

- What is the best distance to use?
- What is the best value of k to use?

• i.e., how do we set the hyperparameters?

- Very problem-dependent
- Must try them all and see what works best

Try out what hyperparameters work best on test set.

Try out what hyperparameters work best on test set.

VERY BAD IDEA! The test set is a proxy for the generalization performance! Use only VERY SPARINGLY, at the end.

Validation

Cross-validation

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that k \sim = 7 works best for this data)

How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test
- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability

Pros

• simple yet effective

Cons

- search is expensive (can be sped-up)
- storage requirements
- difficulties with high-dimensional data

kNN -- Complexity and Storage

• N training images, M test images

- Training: O(1)
- Testing: O(MN)

- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)

k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive

(all 3 images have same L2 distance to the one on the left)

Naïve Bayes

Distribution of data from two classes

Which class does q belong too?

Distribution of data from two classes

This is called the posterior.

the probability of a class z given the observed features X

 $p(\boldsymbol{z}|\boldsymbol{X})$

For classification, z is a discrete random variable (e.g., car, person, building)

X is a set of observed features (e.g., features from a single image)

(it's a function that returns a single probability value)

This is called the posterior:

the probability of a class z given the observed features X

For classification, z is a discrete random variable (e.g., car, person, building)

Each x is an observed feature (e.g., visual words)

(it's a function that returns a single probability value)

Recall:

The posterior can be decomposed according to **Bayes' Rule**

$$p(A|B) = rac{p(B|A)p(A)}{p(B)}$$

In our context...

$$p(oldsymbol{z}|oldsymbol{x}_1,\ldots,oldsymbol{x}_N) = rac{p(oldsymbol{x}_1,\ldots,oldsymbol{x}_N|oldsymbol{z})p(oldsymbol{z})}{p(oldsymbol{x}_1,\ldots,oldsymbol{x}_N)}$$

The naive Bayes' classifier is solving this optimization

 $\hat{z} = \arg \max p(z|X)$ $z \in \mathbf{Z}$

MAP (maximum a posteriori) estimate

$$\hat{z} = \operatorname*{arg\,max}_{z \in \boldsymbol{\mathcal{Z}}} \frac{p(\boldsymbol{X}|z)p(z)}{p(\boldsymbol{X})}$$

Bayes' Rule

$$\hat{z} = rg \max_{z \in \mathcal{Z}} p(\mathbf{X}|z) p(z)$$

Remove constants

To optimize this...we need to compute this J

Compute the likelihood...

A naive Bayes' classifier assumes all features are conditionally independent

$$egin{aligned} p(oldsymbol{x}_1,\ldots,oldsymbol{x}_N|oldsymbol{z}) &= p(oldsymbol{x}_1|oldsymbol{z}) p(oldsymbol{x}_2|oldsymbol{z}) p(oldsymbol{x}_3,\ldots,oldsymbol{x}_N|oldsymbol{z}) \ &= p(oldsymbol{x}_1|oldsymbol{z}) p(oldsymbol{x}_2|oldsymbol{z}) \cdots p(oldsymbol{x}_N|oldsymbol{z}) \end{aligned}$$

To compute the MAP estimate

Given (1) a set of known parameters

(2) observations $\{x_1, x_2, \dots, x_N\}$

Compute which z has the largest probability

 $p(\boldsymbol{z}) \quad p(\boldsymbol{x}|\boldsymbol{z})$

$$\hat{z} = rg\max_{z \in \mathbf{Z}} p(z) \prod_n p(x_n | z)$$

DARPA Selects Carnegie Me

The Tartan Rescue Team	funding to prepare for next	Re
from Carnegie Mellon	December's finals. The	fol
University's National	team's four-limbed CMU	im
Robotics Engineering	Highly Intelligent Mobile	
Center ranked third among	Platform, or CHIMP, robot	Th
teams competing in the	scored 18 out of a possible	the
Defense Advanced	32 points during the	rel
Research Projects Agency	two-day trials. It	the
(DARPA) Robotics	demonstrated its ability to	be
Challenge Trials this	perform such tasks as	of
weekend in Homestead,	removing debris, cutting a	ext
Fla., and was selected by	hole through a wall and	in
the agency as one of eight	closing a series of valves.	its
teams eligible for DARPA	a series and the series of the	be

0.0

0.0

0.09

0.0

0.09

$$p(X|z) = \prod_{v} p(x_v|z)^{c(w_v)}$$
$$= (0.09)^1 (0.55)^6 \cdots (0.09)^1$$

0.18

Numbers get really small so use log probabilities

0.55

 $\log p(X|z = \text{`grandchallenge'}) = -2.42 - 3.68 - 3.43 - 2.42 - 0.07 - 0.07 - 0.07 - 2.42 = -14.58$

 $\log p(X|z = \text{`softrobot'}) = -7.63 - 9.37 - 15.18 - 2.97 - 0.02 - 0.01 - 0.02 - 2.27 = -37.48$

* typically add pseudo-counts (0.001)

** this is an example for computing the likelihood, need to multiply times prior to get posterior

p(xlz)

0.09

teams eligible for DARPA

its

count	1	6	2	1	0	0	0	1
word	Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor
p(xlz)	0.09	0.55	0.18	0.09	0.0	0.0	0.0	0.09

 $\log p(X|z=grand challenge) = -14.58$ $\log p(X|z=bio inspired) = -37.48$

 $\log p(X|z=grand challenge) = -94.06$ $\log p(X|z=bio inspired) = -32.41$

* typically add pseudo-counts (0.001)

** this is an example for computing the likelihood, need to multiply times prior to get posterior

7	Π±τ	rtur	ı Ai	m
Monday, January 20, 2014	za	1 1011		
Bio-Inspi	red	Robo	tic Dev	ice
PITTSBURGH-A	soft,	BioSensics,	developed an	Ren

PITTSBURGH-A soft,	BioSensics, developed an	K
wearable device that	active orthotic device	f
mimics the muscles,	using soft plastics and	ir
tendons and ligaments of	composite materials,	
the lower leg could aid in	instead of a rigid	Т
the rehabilitation of	exoskeleton. The soft	t1
patients with ankle-foot	materials, combined with	16
disorders such as drop	pneumatic artificial	tl
foot, said Yong-Lae Park,	muscles (PAMs),	b
an assistant professor of	lightweight sensors and	0
robotics at Camegie	advanced control	e
Mellon University. Park,	software, made it possible	ir
working with collaborators	for the robotic device to	it
at Harvard University, the	achieve natural motions in	b
University of Southern	the ankle.	С
California, MIT and		0

http://www.fodey.com/generators/newspaper/snippet.asp

Support Vector Machine

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Score function

class scores

Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Distribution of data from two classes

Which class does q belong too?
Distribution of data from two classes

First we need to understand hyperplanes...

Hyperplanes (lines) in 2D

 $w_1x_1 + w_2x_2 + b = 0$

a line can be written as dot product plus a bias

$$oldsymbol{w} \cdot oldsymbol{x} + b = 0$$

 $oldsymbol{w} \in \mathcal{R}^2$

another version, add a weight 1 and push the bias inside

> $oldsymbol{w} \cdot oldsymbol{x} = 0$ $oldsymbol{w} \in \mathcal{R}^3$

Hyperplanes (lines) in 2D

 $m{w}\cdotm{x}+b=0$ (offset/bias outside) $m{w}\cdotm{x}=0$ (offset/bias inside)

$$w_1 x_1 + w_2 x_2 + b = 0$$

Hyperplanes (lines) in 2D

 $m{w}\cdotm{x}+b=0$ (offset/bias outside) $m{w}\cdotm{x}=0$ (offset/bias inside)

Important property: Free to choose any normalization of w

The line $w_1x_1+w_2x_2+b=0$ and the line

 $\lambda(w_1x_1 + w_2x_2 + b) = 0$

define the same line

Now we can go to 3D ...

farthest from all interior points

Want a hyperplane that is far away from 'inner points'

Find hyperplane **w** such that ...

Can be formulated as a maximization problem

$$\max_{\boldsymbol{w}} \frac{2}{\|\boldsymbol{w}\|}$$

subject to $\boldsymbol{w} \cdot \boldsymbol{x}_i + b \geq +1$ if $y_i = +1$ for $i = 1, \dots, N$

What does this constraint mean?

label of the data point

Why is it +1 and -1?

Can be formulated as a maximization problem

$$\begin{aligned} \max_{\boldsymbol{w}} \frac{2}{\|\boldsymbol{w}\|} \\ \text{subject to } \boldsymbol{w} \cdot \boldsymbol{x}_i + b & \geq +1 \quad \text{if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1, \dots, N \end{aligned}$$

Equivalently,

Where did the 2 go?

 $\min_{oldsymbol{w}} \|oldsymbol{w}\|$

subject to $y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \geq 1$ for $i = 1, \dots, N$

What happened to the labels?

'Primal formulation' of a linear SVM

subject to
$$y_i(\boldsymbol{w}\cdot\boldsymbol{x}_i+b)\geq 1$$
 for $i=1,\ldots,N$
Constraints

This is a convex quadratic programming (QP) problem (a unique solution exists)

Separating cats and dogs

Intuitively, we should allow for some misclassification if we can get more robust classification

Trade-off between the MARGIN and the MISTAKES (might be a better solution)

objective	subject to
$\min_{\boldsymbol{w},\boldsymbol{\xi}} \ \boldsymbol{w}\ ^2 + C \sum_i \xi_i$	$y_i(oldsymbol{w}^{ op}oldsymbol{x}_i+b) \geq 1-\xi_i$ for $i=1,\ldots,N$
The slack variable as long as the invers	allows for mistakes, e margin is minimized.

- Every constraint can be satisfied if slack is large
- C is a regularization parameter
 - Small C: ignore constraints (larger margin)
 - Big C: constraints (small margin)
- Still QP problem (unique solution)

C = Infinity hard margin

Comment Window	
SVM (L1) by Sequential Minimal Optimizer	~
Kernel: linear (-), C: Inf	
Kernel evaluations: 971	
Number of Support Vectors: 3	
Margin: 0.0966	
Training error: 0.00%	~
C = 10 soft margin

Comment Window	
SVM (L1) by Sequential Minimal Optimizer	<u>^</u>
Kernel evaluations: 2645	
Number of Support Vectors: 4	
Margin: 0.2265 Training error: 3.70%	×