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HDR Display [Seetzen, …] Super-resolution [Hirsch, Heide, …] Light Fields [Wetzstein, …]
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light transport in a general scene
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computational light transport involves using controllable light sources & cameras 
to sample, acquire or analyze a scene’s transport function

T()

computational light transport
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Paul Debevec’s light stage 6

https://www.fxguide.com/fxfeatured/light_stage_6/



Paul Debevec’s light stage 6

https://www.fxguide.com/fxfeatured/light_stage_6/



mobile light stage

https://news.usc.edu/71893/usc-digital-technology-creates-3-d-portraits-of-obama/



aperture correlation microscope (source: Zeiss)
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modeling light transport

how do we model light transport between one light source and one sensor?

observations:
- radiant energy is always non-negative, i.e., can’t detect “negative” energy”
- the transport function T() is homogeneous of degree 1, i.e., the function 
satisfies T(s*x) = s T(x)
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property 1: homogeneity of degree 1

photo with light 1 turned on synthetic photo

x1

weight

scene light by light source at
100% intensity

observations:
- radiant energy is always non-negative, i.e., can’t detect “negative” energy”
- the transport function T() is homogeneous of degree 1, i.e., the function 
satisfies T(s*x) = s T(x)
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photo with light 1 turned on synthetic photo

x2

weight

observations:
- radiant energy is always non-negative, i.e., can’t detect “negative” energy”
- the transport function T() is homogeneous of degree 1, i.e., the function 
satisfies T(s*x) = s T(x)

scene light by light source at
200% intensity

property 1: homogeneity of degree 1
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photo with light 1 turned on synthetic photo

x0.5

weight

observations:
- radiant energy is always non-negative, i.e., can’t detect “negative” energy”
- the transport function T() is homogeneous of degree 1, i.e., the function 
satisfies T(s*x) = s T(x)

scene light by light source at
50% intensity

(fails for saturated pixels)

property 1: homogeneity of degree 1



two photon fluorescent microscopy

example when homogeneity of degree 1 
condition does not hold true
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computational light transport

observation:
- measurement under two light sources equals the sum of measurements taken 
under each source individually, i.e., T(x_1, x_2) = T(x_1, 0) + T(0, x_2)



property 2: additivity

photo with lights 1 & 2 turned on

photo with light 1 turned on

photo with light 2 turned on
= +

observation:
- measurement under two light sources equals the sum of measurements taken 
under each source individually, i.e., T(x_1, x_2) = T(x_1, 0) + T(0, x_2)



Synthetic photo Real photo

property 2: additivity

observation:
- measurement under two light sources equals the sum of measurements taken 
under each source individually, i.e., T(x_1, x_2) = T(x_1, 0) + T(0, x_2)



Synthetic photo Diff between synthetic and real photos

property 2: additivity

observation:
- measurement under two light sources equals the sum of measurements taken 
under each source individually, i.e., T(x_1, x_2) = T(x_1, 0) + T(0, x_2)
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p =n

pixel valuesn

T
n⇥m

l
m

m independent 
illumination

degrees of freedom

photo with light 1 turned 
on
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modeling light transport with color



“Acquisition and Analysis of Bispectral Bidirectional Reflectance 
and Reradiation Distribution Functions”, Hullin et al. 2010

bispectral BRDF / transport matrix
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modeling light transport with polarization
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modeling light transport with time



modeling light transport with time

[Raskar et al. 2011]



T
transport matrix represents the set of photos under 

all possible (controllable) lighting conditions 

the light transport matrix
Sloan et al 02, Ng et al 03, Seitz et al 05, Sen et al 05, …



1. the light transport matrix: a general model for the 
transfer of radiant energy

2. example transport matrices for real scenes

3. challenges associated with analyzing transport matrices

4. optical algorithms to analyze light transport

overview
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1 point source
turned on

rank(T) ⇡ 9

convex scene, diffuse reflectance, point sources

analyzing               photometric stereo,T

)no shadows
[Shashua, PhD 92]rank(T) = 3
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1 point source
turned on

convex scene, specular reflectance, point sources

specular reflectance
can become full rank

[Ramamoorthi & Hanrahan, SIG 01]
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general scene, projector

T not symmetrici

ibeam-splitter



general scene, coaxial projector & camera

i

ibeam-splitter

T always symmetricT



general scene, array of point sources



1. the light transport matrix: a general model for the 
transfer of radiant energy

2. example transport matrices for real scenes

3. challenges associated with analyzing transport matrices

4. optical algorithms to analyze light transport

overview



T=p l
106

106

1012 elements

basic matrix properties

unknown & extremely large
no random access to its elements

relation to scene geometry & reflectance can be complex
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optical domain

Computing with Light
Key idea: analyze the transport matrix by implementing 

iterative numerical algorithms directly in optics
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Computing with Light

()p = T l

transport
matrix

illumination
pattern

photo

1. project l

2. capture p

numerical domain optical domain

Key idea: analyze the transport matrix by implementing 
iterative numerical algorithms directly in optics



Computing with Light

()

1. project l

2. capture p

numerical domain optical domain

function analyze(T)

· · ·
for i = 1 to k {

· · ·
pi = Tli
· · ·
di = Tri
· · ·

}
· · ·
return result

Key idea: analyze the transport matrix by implementing 
iterative numerical algorithms directly in optics



Computing with Light

numerical domain

()

optical domain

function analyze(T)

· · ·
for i = 1 to k {

· · ·
pi = Tli
· · ·
di = Tri
· · ·

}
· · ·
return result

function analyze()

· · ·
for i = 1 to k {

· · ·
project li, capture pi

· · ·
project ri, capture di

· · ·
}
· · ·
return result

Key idea: analyze the transport matrix by implementing 
iterative numerical algorithms directly in optics



project capture

Eigenvector of a square matrix T
when projected onto scene,   
we get the same photo back
(multiplied by a scalar)

Computing Transport Eigenvectors

l

Numerical goal
find          such that

and     is maximal

Tl = �l
l,�

�
projector

camerabeam
splitter l�l



l,Tl,T2l,T3l, . . .

Optical Power Iteration
Goal: find principal eigenvector of

Observation:  it is a fixed point of the sequence                                   

numerical domain

T

Properties
• linear convergence [Trefethen and Bau 1997] 
• eigenvalues must be distinct
• cannot be orthogonal to principal 

eigenvector
l1

function PowerIt(T)

l1 = initial vector

for i = 1 to k {
pi = Tli

li+1 = pi/�pi�2

}

return li+1



Optical Power Iteration

numerical domain optical domain
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function PowerIt()

l1 = initial vector

for i = 1 to k {
project li, capture pi

li+1 = pi/�pi�2

}

return li+1

function PowerIt(T)

l1 = initial vector

for i = 1 to k {
pi = Tli

li+1 = pi/�pi�2

}

return li+1

Goal: find principal eigenvector of
Observation:  it is a fixed point of the sequence                                   l,Tl,T2l,T3l, . . .

T



Optical Power Iteration

optical domainnumerical domain

()()

project
capture
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function PowerIt(T)

l1 = initial vector

for i = 1 to k {
pi = Tli

li+1 = pi/�pi�2

}

return li+1

Goal: find principal eigenvector of
Observation:  it is a fixed point of the sequence                                   l,Tl,T2l,T3l, . . .

T



Optical Power Iteration

optical domain
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capture
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Goal: find principal eigenvector of
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Optical Power Iteration

optical domain

project
capture

initialize          l1

l1

Tl1

normalize

Goal: find principal eigenvector of
Observation:  it is a fixed point of the sequence                                   l,Tl,T2l,T3l, . . .
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Optical Power Iteration

optical domain

project
capture

initialize          l1

Tl1

normalize

l2

Goal: find principal eigenvector of
Observation:  it is a fixed point of the sequence                                   l,Tl,T2l,T3l, . . .

T



Optical Power Iteration

optical domain

project
capture

initialize          l1

normalize

l2

Tl2

Goal: find principal eigenvector of
Observation:  it is a fixed point of the sequence                                   l,Tl,T2l,T3l, . . .

T



Optical Power Iteration

optical domain

project
capture

initialize          l1

normalize

l100

Tl100

Goal: find principal eigenvector of
Observation:  it is a fixed point of the sequence                                   l,Tl,T2l,T3l, . . .
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Optical Power Iteration

optical domain

(approximate)
principal eigenvector

Goal: find principal eigenvector of
Observation:  it is a fixed point of the sequence                                   l,Tl,T2l,T3l, . . .

T



k

Numerical goal  [Simon and Zha 2000]
find matrices 
that minimize

Rank-k Transport Approximation

n⇥ k
P ,L

k ⇥m

T P
L�

F

Symmetric 
• 1 camera, 1 projector
• 2    photos for rank- approx.

Nonsymmetric
• 2 cameras, 2 projectors
• 4    photos for rank- approx.projector

camerabeam
splitter

T

T

k

k k

k



Results: Optical Arnoldi



• the light transport matrix is a general model for describing the 
transfer or radiant energy

• the entries of a transport matrix describes all possible 
observations one can make of a scene

• transport matrix is often too large to measure directly in 
practice

• numerical algorithms can be partially or fully implemented in 
the optical domain

concluding remarks


