Special Topics: Computational Imaging

http://16385.courses.cs.cmu.edu/

16-385 Computer Vision Fall 2020, Lecture 27



Computational Displays









HDR Imaging [Debevec, Nayar, ...]



Super-resolution [Baker, ...]



Light Fields [Levoy, ...]

Computational Displays



computation



optics & electronics







HDR Imaging [Debevec, Nayar, ...]



Super-resolution [Baker, ...]



al Projection



Light Fields [Levoy, ...]



Light Fields [Wetzstein, ...]

Computational Displays



HDR Display [Seetzen, ...]

Super-resolution [Hirsch, Heide, ...]

Computational Cameras

#### ╋

Computational Displays



# light transport in a general scene



### light transport in a general scene



### light transport in a general scene



### computational light transport

computational light transport involves using controllable light sources & cameras to sample, acquire or analyze a scene's transport function



### 3D imaging for autonomous cars



### 3D imaging for autonomous cars



### 3D imaging for smartphones





### 3D imaging for smartphones





### Paul Debevec's light stage 6



https://www.fxguide.com/fxfeatured/light\_stage\_6/

Paul Debevec's light stage 6



https://www.fxguide.com/fxfeatured/light\_stage\_6/

### mobile light stage



https://news.usc.edu/71893/usc-digital-technology-creates-3-d-portraits-of-obama/

### aperture correlation microscope (source: Zeiss)





### overview

1. **the light transport matrix:** a general model for the transfer of radiant energy

2. example transport matrices for real scenes

3. challenges associated with analyzing transport matrices

4. optical algorithms to analyze light transport

### overview

# 1. **the light transport matrix:** a general model for the transfer of radiant energy

2. example transport matrices for real scenes

3. challenges associated with analyzing transport matrices

4. optical algorithms to analyze light transport

# modeling light transport

how do we model light transport between one light source and one sensor?



(measured in Joules)

radiant energy **x** (measured in Joules)

# modeling light transport

how do we model light transport between one light source and one sensor?



#### observations:

# property 1: homogeneity of degree 1



scene light by light source at 100% intensity

#### observations:

# property 1: homogeneity of degree 1





scene light by light source at 200% intensity

#### observations:

# property 1: homogeneity of degree 1



scene light by light source at 50% intensity (fails for saturated pixels)

#### observations:

# example when homogeneity of degree 1 condition does **not** hold true



### computational light transport



multiple light sources

observation:

- measurement under two light sources equals the sum of measurements taken under each source individually, i.e.,  $T(x_1, x_2) = T(x_1, 0) + T(0, x_2)$ 

# property 2: additivity







observation:

- measurement under two light sources equals the sum of measurements taken under each source individually, i.e.,  $T(x_1, x_2) = T(x_1, 0) + T(0, x_2)$ 

# property 2: additivity





#### observation:

- measurement under two light sources equals the sum of measurements taken under each source individually, i.e.,  $T(x_1, x_2) = T(x_1, 0) + T(0, x_2)$ 

# property 2: additivity





#### observation:

- measurement under two light sources equals the sum of measurements taken under each source individually, i.e.,  $T(x_1, x_2) = T(x_1, 0) + T(0, x_2)$ 













#### Weight 1



Weight 2











photo with light 2 turned on













photo with light 2 turned on














Weight 1 +



Х

12



Х











 $\eta$  pixel values











Х





 $\eta$  pixel values





n pixel values







12



pixel values  ${n}$ 







12



pixel values  ${\mathcal N}$ 







12



pixel values  ${\mathcal N}$ 





Weight 1







n pixel values

 $n \times m$ 

 ${\mathcal m}$  independent illumination degrees of freedom

### modeling light transport with color



light source emitting radiant energy **x** (measured in Joules)

with specific wavelength w

sensor detecting radiant energy **y** (measured in Joules)

with specific wavelength w'

### bispectral BRDF / transport matrix



"Acquisition and Analysis of Bispectral Bidirectional Reflectance and Reradiation Distribution Functions", Hullin et al. 2010

### modeling light transport with polarization



sensor detecting radiant energy **y** (measured in Joules)

with specific polarization state

light source emitting radiant energy **x** (measured in Joules)

with specific polarization state

# modeling light transport with polarization



### modeling light transport with time



radiant energy **x** (measured in Joules) sensor detecting radiant energy **y** (measured in Joules)

at time t'

at time t

# modeling light transport with time



[Raskar et al. 2011]

### the light transport matrix

Sloan et al 02, Ng et al 03, Seitz et al 05, Sen et al 05, ...



transport matrix represents the set of photos under all possible (controllable) lighting conditions



# 1. **the light transport matrix:** a general model for the transfer of radiant energy

#### 2. example transport matrices for real scenes

- 3. challenges associated with analyzing transport matrices
- 4. optical algorithms to analyze light transport

### convex scene, diffuse reflectance, projector



#### convex scene, diffuse reflectance, point sources





ambientource illumidation

 $\begin{array}{l} \text{no shadows} \Rightarrow \\ rank(\mathbf{T}) = 3 \ \text{[Shashua, PhD 92]} \\ \text{attached shadows} \qquad \Rightarrow \\ rank(\mathbf{T}) \approx 9 \ \text{[Basri \& Jacobs, PAMI 01]} \\ \text{analyzing } \mathbf{T} \Leftrightarrow \text{ photometric stereo} \end{array}$ 



#### convex scene, specular reflectance, point sources





ambientource tlumedation

specular reflectance  $\Rightarrow$  ${f T}$  can become full rank [Ramamoorthi & Hanrahan, SIG 01]

analyzing  $T \Leftrightarrow$ shape-from-specularities [Sanderson et al, PAMI 89]





### convex scene, diffuse reflectance, projector



#### convex scene, translucency, projector



#### convex scene, translucency, projector



#### convex scene, translucency, projector





### general scene, projector







### general scene, coaxial projector & camera







### general scene, array of point sources







1. **the light transport matrix:** a general model for the transfer of radiant energy

2. example transport matrices for real scenes

3. challenges associated with analyzing transport matrices

4. optical algorithms to analyze light transport

### basic matrix properties



 $10^{12}$  elements

unknown & extremely large no random access to its elements relation to scene geometry & reflectance can be complex



1. **the light transport matrix:** a general model for the transfer of radiant energy

2. example transport matrices for real scenes

3. challenges associated with analyzing transport matrices

4. optical algorithms to analyze light transport









### **Computing Transport Eigenvectors**



Eigenvector of a square matrix T when projected onto scene, we get the same photo back (multiplied by a scalar)

#### project



#### capture



Numerical goal find  ${f l},\lambda$  such that  ${f T}{f l}=\lambda{f l}$  and  $\lambda$  is maximal
Goal: find principal eigenvector of TObservation: it is a fixed point of the sequence  $l, Tl, T^2l, T^3l, \ldots$ 

numerical domain

function  $PowerIt(\mathbf{T})$ 

 $\mathbf{l}_1 = \text{initial vector}$ 

$$\mathbf{for} \ i = 1 \ \mathrm{to} \ k \ \{ \\ \mathbf{p}_i = \mathbf{Tl}_i \end{bmatrix}$$

$$\left\{ \begin{array}{c} \mathbf{l}_{i+1} = \mathbf{p}_i / \|\mathbf{p}_i\|_2 \end{array} 
ight\}$$

return  $\mathbf{l}_{i+1}$ 

Properties

- linear convergence [Trefethen and Bau 1997]
- eigenvalues must be distinct
- $\mathbf{l}_1$  cannot be orthogonal to principal eigenvector





























## **Rank-k Transport Approximation**



Numerical goal [Simon and Zha 2000] find matrices that minimize  $\mathbf{P}_{n \times k}, \mathbf{L}_{k \times m}$ 



#### Symmetric ${f T}$

- 1 camera, 1 projector
- 2 kphotos for rank- kapprox.

#### Nonsymmetric T

- 2 cameras, 2 projectors
- 4 k photos for rank- k approx.

# **Results: Optical Arnoldi**



# concluding remarks

- the light transport matrix is a general model for describing the transfer or radiant energy
- the entries of a transport matrix describes all possible observations one can make of a scene
- transport matrix is often too large to measure directly in practice
- numerical algorithms can be partially or fully implemented in the optical domain