
16-385 Computer Vision, Fall 2021

Programming Assignment 2
Augmented Reality with Planar Homographies

Due Date: Wed October 6, 2021 23:59

In this assignment, you will be implementing an AR application step by step using planar
homographies. Before we step into the implementation, we will walk you through the theory
of planar homographies. In the programming section, you will first learn to find point
correspondences between two images and use these to estimate the homography between
them. Using this homography you will then warp images and finally implement your own
AR application.

1 Instructions

1. Integrity and collaboration: Students are encouraged to work in groups but each
student must submit their own work. If you work as a group, include the names of
your collaborators in your write up. Code should NOT be shared or copied. Please
DO NOT use external code unless permitted. Plagiarism is strongly prohibited and
may lead to failure of this course.

2. Start early! This is a much bigger assignment than assignment 1.

3. Questions: If you have any questions, please look at Piazza first. Other students may
have encountered the same problem, and it may be solved already. If not, post your
question on the discussion board. Teaching staff will respond as soon as possible.

4. Write-up: Your write-up should mainly consist of three parts, your answers to theory
questions, resulting images of each step, and the discussions for experiments. Please
note that we DO NOT accept handwritten scans for your write-up in this assign-
ment. Please type your answers to theory questions and discussions for experiments
electronically.

5. Please stick to the function prototypes mentioned in the handout. This makes verifying
code easier for the TAs.

6. Submission: Create a zip file, <andrew-id>.zip, composed of your write-up, your
Python implementations (including helper functions), and your implementations, re-
sults for extra credits (optional). Please make sure to remove the data/ folder,
loadVid.py, helper.py, and any other temporary files you’ve generated. Your fi-
nal upload should have the files arranged in this layout:

1

• <AndrewId>.zip

– <AndrewId>.pdf

– python/

∗ ar.py

∗ briefRotTest.py

∗ HarryPotterize.py

∗ matchPics.py

∗ planarH.py

∗ yourHelperFunctions.py (optional)

– result/

∗ ar.avi

– ec/ (optional for extra credit)

∗ ar ec.py

∗ panorama.py

∗ the images required for generating the results.

Please make sure you do follow the submission rules mentioned above before
uploading your zip file to Canvas. Assignments that violate this submission rule
will be penalized by up to 10% of the total score.

7. File paths: Please make sure that any file paths that you use are relative and not
absolute. Not cv2.imread(’/name/Documents/subdirectory/hw2/data/xyz.jpg’)

but cv2.imread(’../data/xyz.jpg’).

2 Homographies

Planar Homographies as a Warp

Recall that a planar homography is an warp operation (which is a mapping from pixel
coordinates from one camera frame to another) that makes a fundamental assumption of the
points lying on a plane in the real world. Under this particular assumption, pixel coordinates
in one view of the points on the plane can be directly mapped to pixel coordinates in another
camera view of the same points, through a homography H:

x1 ≡ Hx2 (1)

The ≡ symbol stands for identical to. The points x1 and x2 are in homogeneous coordi-

nates, which means they have an additional dimension. If x1 is a 3D vector
[
xi yi zi

]T
,

it represents the 2D point
[
xi

zi

yi
zi

]T
(called inhomogeneous or heterogeneous coordinates).

This additional dimension is a mathematical convenience to represent transformations (like
translation, rotation, scaling, etc) in a concise matrix form. The ≡ means that the equation
is correct to a scaling factor.

2

Figure 1: A homography H links all points xπ lying in plane π between two
camera views x and x′ in cameras C and C ′ respectively such that x′ = Hx.

[From Hartley and Zisserman]

The Direct Linear Transform

A very common problem in projective geometry is often of the form x ≡ Ay, where x and y
are known vectors, and A is a matrix which contains unknowns to be solved. Given matching
points in two images, our homography relationship clearly is an instance of such a problem.
Note that the equality holds only up to scale (which means that the set of equations are of
the form x = λHx′), which is why we cannot use an ordinary least squares solution such as
what you may have used in the past to solve simultaneous equations. A standard approach
to solve these kinds of problems is called the Direct Linear Transform, where we rewrite
the equation as proper homogeneous equations which are then solved in the standard least
squares sense. Since this process involves disentangling the structure of the H matrix, it’s a
transform of the problem into a set of linear equations, thus giving it its name.

Q2.1 Correspondences (15 points)
Let x1 be a set of points in an image and x2 be the set of corresponding points in an
image taken by another camera. Suppose there exists a homography H such that:

xi
1 ≡ Hxi

2 (i ∈ {1 . . . N})

where xi
1 =

[
xi1 yi1 1

]T
are in homogeneous coordinates, xi

1 ∈ x1 and H is a 3 × 3
matrix. For each point pair, this relation can be rewritten as

Aih = 0

where h is a column vector reshaped from H, and Ai is a matrix with elements de-
rived from the points xi

1 and xi
2. This can help calculate H from the given point

correspondences.

1. How many degrees of freedom does h have? (3 points)

2. How many point pairs are required to solve h? (2 points)

3

3. Derive Ai. (5 points)

4. When solving Ah = 0, in essence you’re trying to find the h that exists in the null
space of A. What that means is that there would be some non-trivial solution for
h such that that product Ah turns out to be 0.
What will be a trivial solution for h? Is the matrix A full rank? Why/Why not?
What impact will it have on the singular values? What impact will it have on the
singular vectors? (5 points)

Using Matrix Decompositions to calculate the homography

A homography H transforms one set of points (in homogeneous coordinates) to another set
of points. In this project, we will obtain the corresponding point coordinates using feature
matches and will then need to calculate the homography. You have already derived that
Ax = 0 in Question 2. In this section, we will look at how to solve such equations using two
approaches, either of which can be used in the subsequent assignment questions.

Eigenvalue Decomposition

One way to solve Ax = 0 is to calculate the eigenvalues and eigenvectors of A. The
eigenvector corresponding to 0 is the answer for this. Consider this example:

A =

3 6 −8
0 0 6
0 0 2


Using the numpy.linalg function eig, we get the following eigenvalues and eigenvectors:

V =

1.0000 −0.8944 −0.9535
0 0.4472 0.2860
0 0 0.0953


D =

[
3 0 2

]
Here, the columns of V are the eigenvectors and each corresponding element in D it’s

eigenvalue. We notice that there is an eigenvalue of 0. The eigenvector corresponding to this
is the solution for the equation Ax = 0.

Ax =

3 6 −8
0 0 6
0 0 2

−0.8944
0.4472

0

 =

0
0
0


Singular Value Decomposition

The Singular Value Decomposition (SVD) of a matrix A is expressed as:

A = UΣV T

4

Here, U is a matrix of column vectors called the “left singular vectors”. Similarly, V is called
the “right singular vectors”. The matrix Σ is a diagonal matrix. Each diagonal element σi
is called the “singular value” and these are sorted in order of magnitude. In our case, it is a
9× 9 matrix.

• If σ9 = 0, the system is exactly-determined, a homography exists and all points fit
exactly.

• If σ9 ≥ 0, the system is over-determined. A homography exists but not all points fit
exactly (they fit in the least-squares error sense). This value represents the goodness
of fit.

• Usually, you will have at least four correspondences. If not, the system is under-
determined. We will not deal with those here.

The columns of U are eigenvectors of AAT . The columns of V are the eigenvectors of ATA.
We can use this fact to solve for h in the equation Ah = 0. Using this knowledge, let us
reformulate our problem of solving Ax = 0. We want to minimize the error in solution in
the least-squares sense. Ideally, the product Ah should be 0. Thus the sum-squared error
can be written as:

f(h) =
1

2
(Ah− 0)T (Ah− 0)

=
1

2
(Ah)T (Ah)

=
1

2
hTATAh

Minimizing this error with respect to h, we get:

d

dh
f = 0

=⇒ 1

2
(ATA + (ATA)T)h = 0

ATAh = 0

This implies that the value of h equals the eigenvector corresponding to the zero eigen-
value (or closest to zero in case of noise). Thus, we choose the smallest eigenvalue of ATA,
which is σ9 in Σ and the least-squares solution to Ah = 0 is the the corresponding eigen-
vector (in column 9 of the matrix V).

3 Computing Planar Homographies

Feature Detection and Matching

Before finding the homography between an image pair, we need to find corresponding point
pairs between two images. But how do we get these points? One way is to select them

5

manually, which is tedious and inefficient. The CV way is to find interest points in the
image pair and automatically match them. In the interest of being able to do cool stuff, we
will not reimplement a feature detector or descriptor here, but use python modules. The
purpose of an interest point detector (e.g. Harris, SIFT, SURF, etc.) is to find particular
salient points in the images around which we extract feature descriptors (e.g. MOPS, etc.).
These descriptors try to summarize the content of the image around the feature points in as
succinct yet descriptive manner possible (there is often a trade-off between representational
and computational complexity for many computer vision tasks; you can have a very high
dimensional feature descriptor that would ensure that you get good matches, but computing
it could be prohibitively expensive). Matching, then, is a task of trying to find a descriptor in
the list of descriptors obtained after computing them on a new image that best matches the
current descriptor. This could be something as simple as the Euclidean distance between
the two descriptors, or something more complicated, depending on how the descriptor is
composed. For the purpose of this exercise, we shall use the widely used FAST detector in
concert with the BRIEF descriptor.

Figure 2: A few matched FAST feature points with the BRIEF descriptor.

Q3.1 FAST Detector (5 points)
How is the FAST detector different from the Harris corner detector that you’ve seen
in the lectures? (You will probably need to look up the FAST detector online.) Can
you comment on its computational performance vis-à-vis the Harris corner detector?

Q3.2 BRIEF Descriptor (5 points)
How is the BRIEF descriptor different from the filterbanks you’ve seen in the lectures?
Could you use any one of those filter banks as a descriptor?

Q3.3 Matching Methods (5 points)
The BRIEF descriptor belongs to a category called binary descriptors. In such de-
scriptors the image region corresponding to the detected feature point is represented
as a binary string of 1s and 0s. A commonly used metric used for such descriptors is
called the Hamming distance. Please search online to learn about Hamming distance

6

and Nearest Neighbor, and describe how they can be used to match interest points with
BRIEF descriptors. What benefits does the Hamming distance distance have over a
more conventional Euclidean distance measure in our setting?

Q3.4 Feature Matching (10 points)
Please implement a function:

matches, locs1, locs2 = matchPics(I1, I2)

where I1 and I2 are the images you want to match. locs1 and locs2 are N×2 matrices
containing the x and y coordinates of the feature points. matches is a p×2 matrix where
the first column is indices into features in I1, and similarily the second column contains
indices related to I2. Use the provided helper function corner detection to compute
the features, then build descriptors using the provided helper function computeBrief,
and finally compare them using the provided helper function briefMatch.

Use the provided helper function plotMatches to visualize your matched points and
include the result image in your write-up. An example is shown in Fig. 2.

The number of matches between the two images varies based on the parameter sigma
used in corner detection, and also on the value ratio in briefMatch. You should
vary these to get the best results. The example shown in Fig. 2 is with sigma = 0.15
and ratio = 0.65.

We provide you with the following helper functions:

locs = corner detection(img, sigma)

desc, locs = computeBrief(img, locs)

matches = briefMatch(desc1, desc2)

plotMatches(im1, im2, matches, locs1, locs2)

locs is an N × 2 matrix in which each row represents the location (x, y) of a feature
point. Please note that the number of valid output feature points can be less than the
number of input feature points. desc is the corresponding matrix of BRIEF descriptors
for the interest points.

Q3.5 BRIEF and Rotations (10 points)
Let’s investigate how BRIEF works with rotations. Write a script briefRotTest.py

that:

• Takes the cv cover.jpg and matches it to itself rotated [Hint: use scipy.ndimage.rotate]
in increments of 10 degrees.

• Stores a histogram of the count of matches for each orientation.

• Plots the histogram using matplotlib.pyplot.hist

Visualize the feature matching result at three different orientations and include them
in your write-up. Explain why you think the BRIEF descriptor behaves this way.

7

Homography Computation

Q3.6 Computing the Homography (15 points)

Write a function computeH that estimates the planar homography from a set of matched
point pairs.

H2to1 = computeH(x1, x2)

x1 and x2 are N × 2 matrices containing the coordinates (x, y) of point pairs between
the two images. H2to1 should be a 3× 3 matrix for the best homography from image
2 to image 1 in the least-square sense. The numpy.linalg functions eig or svd will
be useful to get the eigenvectors (see Section 2 of this handout for details).

Homography Normalization

Normalization improves numerical stability of the solution and you should always normalize
your coordinate data. Normalization has two steps:

1. Translate the mean of the points to the origin.

2. Scale the points so that the largest distance to the origin is
√

2.

This is a linear transformation and can be written as follows:

x̃1 = T1x1

x̃2 = T2x2

where x̃1 and x̃2 are the normalized homogeneous coordinates of x1 and x2. T1 and T2

are 3× 3 matrices.
The homography H from x̃2 to x̃1 computed by computeH satisfies:

x̃1 = Hx̃2

By substituting x̃1 and x̃2 with T1x1 and T2x2, we have:

T1x1 = HT2x2

x1 = T−11 HT2x2

Q3.7 Homography with normalization (10 points)
Implement the function computeH norm:

H2to1 = computeH norm(x1, x2)

This function should normalize the coordinates in x1 and x2 and call computeH(x1,
x2) as described above.

8

RANSAC

The RANSAC algorithm can generally fit any model to noisy data. You will implement it
for (planar) homographies between images. Remember that 4 point-pairs are required at a
minimum to compute a homography.

Q3.8 Implement RANSAC for computing a homography (25 points)
Write a function:

bestH2to1, inliers = computeH ransac(locs1, locs2)

where bestH2to1 should be the homography H with most inliers found during RANSAC.
H will be a homography such that if x2 is a point in locs2 and x1 is a corresponding
point in locs1, then x1 ≡ Hx2. locs1 and locs2 are N × 2 matrices containing
the matched points. inliers is a vector of length N with a 1 at those matches that
are part of the consensus set, and 0 elsewhere. Use computeH norm to compute the
homography.

Figure 3: Text book Figure 4: HarryPotterized Text book

Automated Homography Estimation and Warping

Q3.9 Putting it together (10 points)
Write a script HarryPotterize.py that

1. Reads cv cover.jpg, cv desk.png, and hp cover.jpg.

2. Computes a homography automatically using MatchPics and computeH ransac.

3. Uses the computed homography to warp hp cover.jpg to the dimensions of
the cv desk.png image using the skimage function skimage.transform.warp

or OpenCV function cv2.warpPerspective.

4. At this point you should notice that although the image is being warped to the
correct location, it is not filling up the same space as the book. Why do you think
this is happening? How would you modify hp cover.jpg to fix this issue?

9

5. Implement the function:

composite img = compositeH(H2to1, template, img)

to now compose this warped image with the desk image as in in Figure 4

6. Include your result in your write-up.

4 Creating your Augmented Reality application

Q4.1 Incorporating video (20 points)
Now with the code you have, you’re able to create you own Augmented Reality appli-
cation. What you’re going to do is HarryPoterize the video ar source.mov onto the
video book.mov. More specifically, you’re going to track the computer vision text book
in each frame of book.mov, and overlay each frame of ar source.mov onto the book in
book.mov. Please write a script ar.py to implement this AR application and save your
result video as ar.avi in the result/ directory. You may use the function loadVid

that we provide to load the videos. Your result should be similar to the LifePrint
project. You’ll be given full credits if you can put the video together correctly. See
Figure 5 for an example frame of what the final video should look like.

Figure 5: Rendering video on a moving target

Note that the book and the videos we have provided have very different aspect ratios
(the ratio of the image width to the image height). You must crop each frame to fit
onto the book cover. You should crop each frame such that only its central region is
used in the final output. See Figure 6 for an example.

10

https://www.indiegogo.com/projects/lifeprint-photos-that-come-to-life-in-your-hands/
https://www.indiegogo.com/projects/lifeprint-photos-that-come-to-life-in-your-hands/

Figure 6: Crop out the yellow regions of each frame to match the aspect ratio of
the book

Also, the video book.mov only has translation of objects. If you want to account
for rotation of objects, scaling, etc, you would have to pick a better feature point
representation (like ORB).

5 Extra Credit

Q5.1x: Make Your AR Real Time (15 points)

Write a script ar ec.py that implements the AR program described in Q4.1 in real
time. As an output of the script, you should process the videos frame by frame and
have the combined frames played in real time. You don’t need to save the result video
for this question. The extra credits will be given to fast programs measured by FPS
(frames per second). More specifically, we give 5 points to programs that run faster
than 10 FPS, 10 points to programs running faster than 20 FPS and 15 points to
programs running faster than 30 FPS.

Q5.2x: Create a Simple Panorama (10 points)

Take two pictures with your own camera, separated by a pure rotation as best as
possible, and then construct a panorama with panorama.py. Be sure that objects in
the images are far enough away so that there are no parallax effects. You can use
python module cpselect to select matching points on each image or some automatic
method. Submit the original images, the final panorama, and the script panorama.py
that loads the images and assembles a panorama. We have provided two images for
you to get started (data/pano left.png and data/pano right.png). Please use your
own images when submitting this assignment. In your submission, include your original
images and the panorama result image in your write-up. See Figure 8-10 below for
example.

11

Figure 7: Original Image 1 (left) Figure 8: Original Image 2 (right)

Figure 9: Panorama

12

