
Introduction to neural networks

16-385 Computer Vision
Fall 2021, Lecture 15 & 16http://16385.courses.cs.cmu.edu/

• Perceptron.

• Neural networks.

• Training perceptrons.

• Gradient descent.

• Backpropagation.

• Stochastic gradient descent.

Overview of today’s lecture

Slide credits
Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).

• Noah Snavely (Cornell University).

• Fei-Fei Li (Stanford University).

• Andrej Karpathy (Stanford University).

Perceptron

1950s Age of the Perceptron

1980s Age of the Neural Network

2010s Age of the Deep Network

1969 Perceptrons (Minsky, Papert)

2000s Age of the Support Vector Machine

1957 The Perceptron (Rosenblatt)

1990s Age of the Graphical Model

1986 Back propagation (Hinton)

deep learning = known algorithms + computing power + big data

The Perceptron

inputs

weights

output

sum sign function
(Heaviside step function)

Neural nets/perceptrons are loosely inspired by
biology.

But they certainly are not a model of how the brain
works, or even how neurons work.

Aside: Inspiration from Biology

perceptron is just one line of code!
sign of zero is +1

initialized to 0

observation (1,-1)
label -1

= 1

observation (1,-1)
label -1

observation (1,-1)
label -1

update w

observation (1,-1)
label -1

update w

observation (1,-1)
label -1

-1 1(1,-1)(0,0)(-1,1)

no match!

observation (-1,1)
label +1

(-1,1)

observation (-1,1)
label +1

= 1
(-1,1)

(-1,1) (-1,1)

observation (-1,1)
label +1

= 1
(-1,1)

(-1,1) (-1,1)

update w

observation (-1,1)
label +1

update w

+1 0(-1,1)(-1,1)(-1,1)

match!

update w

update w

update w

repeat …

The Perceptron

inputs

weights

output

sum sign function
(e.g., step,sigmoid, Tanh, ReLU)

bias

Another way to draw it…

inputs

weights

output

Activation Function
(e.g., Sigmoid function of weighted sum)

(1) Combine the sum
and activation function

(2) suppress the bias
term (less clutter)

output

float perceptron(vector<float> x, vector<float> w)
{

float a = dot(x,w);
return f(a);

}

float f(float a)
{

return 1.0 / (1.0+ exp(-a));
}

Activation function (sigmoid, logistic function)

Perceptron function (logistic regression)

Programming the 'forward pass'

Neural networks

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

Connect a bunch of perceptrons together …

How many perceptrons in this neural network?

Neural Network
a collection of connected perceptrons

‘one perceptron’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘two perceptrons’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘three perceptrons’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘four perceptrons’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘five perceptrons’

Connect a bunch of perceptrons together …

Neural Network
a collection of connected perceptrons

‘six perceptrons’

Connect a bunch of perceptrons together …

‘input’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)

‘input’ layer
‘hidden’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)

‘input’ layer
‘hidden’ layer

‘output’ layer

Some terminology…

…also called a Multi-layer Perceptron (MLP)

this layer is a
‘fully connected layer’

all pairwise neurons between layers are connected

so is this

all pairwise neurons between layers are connected

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20

How many neurons (perceptrons)?

How many weights (edges)?

How many learnable parameters total?

4 + 2 = 6

(3 x 4) + (4 x 2) = 20

20 + 4 + 2 = 26
bias terms

Training perceptrons

Let’s start easy

world’s smallest perceptron!

What does this look like?

world’s smallest perceptron!

(a.k.a. line equation, linear regression)

Given a set of samples and a Perceptron

Estimate the parameters of the Perceptron

Learning a Perceptron

Given a set of samples and a Perceptron

Estimate the parameters of the Perceptron

Learning a Perceptron

what is this
activation function?

Given a set of samples and a Perceptron

Estimate the parameters of the Perceptron

Learning a Perceptron

what is this
activation function? linear function!

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …

Given several examples

An Incremental Learning Strategy
(gradient descent)

and a perceptron

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

An Incremental Learning Strategy
(gradient descent)

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

perceptron
output

true
label

perceptron
parameter

An Incremental Learning Strategy
(gradient descent)

Given several examples

Modify weight such that gets ‘closer’ to

and a perceptron

perceptron
output

true
label

perceptron
parameter

An Incremental Learning Strategy
(gradient descent)

what does
this mean?

Loss Function
defines what is means to be

close to the true solution

YOU get to chose the loss function!
(some are better than others depending on what you want to do)

Before diving into gradient descent, we need to understand …

Squared Error (L2)
(a popular loss function) ((why?))

L1 Loss L2 Loss

Zero-One Loss Hinge Loss

World’s Smallest Perceptron!
back to the…

function of ONE parameter!

(a.k.a. line equation, linear regression)

Given several examples

Modify weight such that gets ‘closer’ to

Learning Strategy
(gradient descent)

and a perceptron

perceptron
output

true
label

perceptron
parameter

Code to train your perceptron:

just one line of code!

Now where does this come from?

Gradient descent

(partial) derivatives tell us how
much one variable affects another

Slope of a function Knobs on a machine

Two ways to think about them:

describes the slope around
a point

1. Slope of a function:

describes how each
‘knob’ affects the

output

input output

2. Knobs on a machine:

output will change bysmall change in parameter

Given a
fixed-point on a function,

move in the direction
opposite of the gradient

Gradient descent:

Gradient descent:

update rule:

Backpropagation

World’s Smallest Perceptron!
back to the…

function of ONE parameter!

(a.k.a. line equation, linear regression)

Training the world’s smallest perceptron

this should be the
gradient of the loss

function

This is just gradient
descent, that means…

…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…

Compute the derivative

That means the weight update for gradient descent is:

just shorthand

move in direction of negative gradient

Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

Training the world’s smallest perceptron

world’s (second) smallest
perceptron!

function of two parameters!

Gradient Descent

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

we just need to compute partial
derivatives for this network

Derivative computation

Why do we have partial derivatives now?

Derivative computation

Gradient Update

Gradient Descent

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
(adjustable step size)

two lines now

(side computation to track loss.
not needed for backprop)

We haven’t seen a lot of ‘propagation’ yet
because our perceptrons only had one layer…

multi-layer perceptron

function of FOUR parameters and FOUR layers!

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1

Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:

Entire network can be written out as a long equation

What is known? What is unknown?

known

We need to train the network:

Entire network can be written out as a long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function
sometimes has

parameters

Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP

Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives

So we need to compute the partial derivatives

how

…this
this

does
affect…

Partial derivative describes…

So, how do you compute it?

(loss layer)

Remember,

The Chain Rule

rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…

rest of the network

Chain Rule!

rest of the network

Just the partial
derivative of L2 loss

rest of the network

Let’s use a Sigmoid function

rest of the network

Let’s use a Sigmoid function

rest of the network

already computed.
re-use (propagate)!

The Chain Rule

a.k.a. backpropagation

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

already computed.
re-use (propagate)!

depends ondepends on
depends on

depends ondepends on

depends on

depends on

depends ondepends on
depends on

depends ondepends on

depends on

depends on

depends ondepends on
depends on

depends ondepends on

depends on

depends on

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

Stochastic gradient
descent

What we are truly minimizing:

min
$
%
&'(

)

𝐿(𝑦&, 𝑓/01(𝑥&))

The gradient is:

What we are truly minimizing:

min
$
%
&'(

)

𝐿(𝑦&, 𝑓/01(𝑥&))

The gradient is:

%
&'(

)
𝜕𝐿(𝑦&, 𝑓/01(𝑥&))

𝜕θ

What we use for gradient update is:

What we are truly minimizing:

min
$
%
&'(

)

𝐿(𝑦&, 𝑓/01(𝑥&))

The gradient is:

%
&'(

)
𝜕𝐿(𝑦&, 𝑓/01(𝑥&))

𝜕θ

What we use for gradient update is:

𝜕𝐿(𝑦&, 𝑓/01(𝑥&))
𝜕θ

for some i

vector of parameter update equations

vector of parameter partial derivatives

Stochastic Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update

How do we select which sample?

How do we select which sample?

• Select randomly!

Do we need to use only one sample?

How do we select which sample?

• Select randomly!

Do we need to use only one sample?

• You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

How do we select which sample?

• Select randomly!

Do we need to use only one sample?

• You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

• It’s very expensive when N is large (big data).

Do I lose anything by using stochastic GD?

How do we select which sample?

• Select randomly!

Do we need to use only one sample?

• You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

• It’s very expensive when N is large (big data).

Do I lose anything by using stochastic GD?

• Same convergence guarantees and complexity!
• Better generalization.

