INntroduction to neural networks

inputs

weights
weighted
Wy SUm unit step function

o W,
'3

W,

(P,
S

X4

16-385 Computer Vision
http://16385.courses.cs.cmu.edu/ Fall 2021, Lecture 15 & 16

Overview of today’s lecture

« Perceptron.

* Neural networks.

* Training perceptrons.
« (Gradient descent.

« Backpropagation.

« Stochastic gradient descent.

Slide credits

Most of these slides were adapted from:
« Kris Kitani (16-385, Spring 2017).

* Noah Snavely (Cornell University).

* Fei-Fei Li (Stanford University).

* Andrej Karpathy (Stanford University).

Perceptron

1950s Age of the Perceptron

1957 The Perceptron (Rosenblatt)
1969 Perceptrons (Minsky, Papert)

1980s Age of the Neural Network

1986 Back propagation (Hinton)

1990s Age of the Graphical Model
2000s Age of the Support Vector Machine

2010s Age of the Deep Network

deep learning = known algorithms + computing power + big data

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton?
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedure’.

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units. If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®. Learning becomes more interesting but

t To whom correspondence should be addressed.

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,
Yi, of the units that are connected to j and of the weights, w;,
on these connections

X; =3 ViWji (1)

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.
A unit has a real-valued output, y;, which is a non-linear
function of its total input
1

T 14ed

Yj (2)

©1986 Nature Publishing Group

The Perceptron

weights

sign function
(Heaviside step function)

@— y output

inputs

Aside: Inspiration from Biology

impulses carried
toward cell body

ddﬁ@

nucleus

branches
of axon

P
(f axon___ Rt e
» .

/ (\ impulses carried

away from cell body
cell body

axon
terminals

L wo

*@® synapse
axon from a neuron
woITo

cell body

Zw,-a:,— +b

w1

f (Zw,xi 3 b)

output axon

activation
function

f

WXy

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets/perceptrons are loosely inspired by
biology.

But they certainly are not a model of how the brain
works, or even how neurons work.

1: function PERCEPTRON ALGORITHM
2: w® «— 0

3: fort=1,...,T do

4: RECEIVE(z(®))

5. g(t) - Sig1‘1 <w(t_1) m(t)> perceptron is just one line of code!
. A ’ sign of zero is +1

6: RECEIVE(y?) ye{1,-1)

7. wit) = w4y, - 2P 1[y® £ GO

RECEIVE(z®))

9P = 31gn(<w(t—1>,m<t)>)

RECEIVE(y?)

wi) = wy ™Dy, 1y £ §0)

initialized to O

RECEIVE(z("))

9P = sign((w(t_l), m(t)))

RECEIVE(y?)

wl) =D 2 1y £ 90

e oObservation (1,-1)

RECEIVE(z®)

(w(t—l), m(t))

RECEIVE(y")

w,ff) _ ,w7(lt—1

)y -zl 1[y® #£ @)

e oObservation (1,-1)

ﬁg,(:) = Sign((rw(t—l), m(rﬁ)))

=1

RECEIVE(z("))

(w1, m(t)>)

RECEIVE

(%%)

w? =D 2 1y £ 90

e observation (1,-1)
label -1

RECEIVE(z(®)

9P = sign(('w(t_l),a:(t)))

RECEIVE(y?)

) = w4y al - 1y® # GO

update w

N B T T

e observation (1,-1)
label -1

RECEIVE(z(®)

9P = sign(('w(t_l),a:(t)))

RECEIVE(y?)

) = w4y al - 1y® # GO

update w

N B T

(-1,1) (0,0) -1 (1,-1)

no match!

1

e observation (1,-1)
label -1

RECEIVE(z®))

9P = 31gn(<w(t—1>,m(t)>)

RECEIVE(y?)

wy) = wi ™Y 4y -2l 1y® #§O)
(_1’1)

RECEIVE(z(?))
observation (-1,1)

RECEIVE(z ")

g = sign((w(t—l),a:(t)))
RECEELD 7 = si;gn((w(t—l), m(t)>)
- . 1,1 1,1
wd = w4y, 20 1[y® £ §O)] _, CRIEEENGR)
(-1,1)

observation (-1,1)

RECEIVE(z®)

3y = sign (D) w(t)>>

RECEIVE(y?) gj(:) _ sign((w(t_l), .’B(t)>)
- A, :
wy = w4y, - 1y® # §O) _, () ()
(_1’1)

observation (-1,1)
label +1

RECEIVE(z®)

i) = Sign((’w(t_l), w(t))) update w
(t match!
RECEIVE(y") t t—1 t -
wy) =wi ™Y oy, -2l - 1y® # §O)
t t—1 t ~
wy = w4y, - 1y® # §O) (-1,1) -1,1) +1 (-1,1) 0

observation (-1,1)
label +1 ®

update w

RECEIVE(z(®)) —

9P = sign((w(t_l), m(t)))

RECEIVE(y?)

wl) =D 2 1y £ 90

RECEIVE(z("))

i) = sign(
RECEIVE(y?)

| w® — 1

(w(t_l)’ a’:(ﬂ))

20 1O # 3]

RECEIVE(z("))

7y = sign(
RECEIVE(y?)

t) _ (t—1

- Wp™ = Wn

(w(t_l)’ m(ﬂ))

20 1O # 3]

update w

RECEIVE(z®) | -

9P = sign((w(t_l), m(t)))

RECEIVE(y?)

wl) =D 2 1y £ 90

RECEIVE(z("))

GO — sign((w(t_l),a:(t)))

RECEIVE(y?)

CwlP = w4y, 2l 1[y® £ g(t)])

RECEIVE(z("))

GO — sign((w(t_l),a:(t)))

RECEIVE(y?)

L wg) = w,gt_l) + y; - (L',Elt) .]_[y(t) ?é g(t)]

repeat ...

The Perceptron

weights

sign function
(e.g., step,sigmoid, Tanh, RelLU)

@— y output

inputs

Another way to draw it...

weights a4 — Wi T
(1) Combine the sum Zz: v
and activation function

y = f(a)

inputs @ w3 S a f Y output

Activation Function
(e.g., Sigmoid function of weighted sum)

(2) suppress the bias
term (less clutter) ry =1

WN

Programming the ‘forward pass'

Activation function (sigmoid, logistic function)

float f(float a)

{
return 1.0 / (1.0+ exp(-a));

@ w3 > f Y output

Perceptron function (logistic regression)

float perceptron (vector<float> x, vector<float> w)

{
float a = dot(x,w);
return f (a);

Neural networks

Connect a bunch of perceptrons together ...

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

N
S

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

—
Q

O
S

How many perceptrons in this neural network?

O

Q\ I‘Ca /Q
X

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

7

‘one perceptron’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

two perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

three perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

‘four perceptrons’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

five perceptrons’

N/

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

% 'SIX perceptrons’

Some terminology...

input’ layer

@} N
I NE=SE S =

X

e S

...also called a Multi-layer Perceptron (MLP)

Some terminology...

‘hidden’ layer
input’ layer

W

NN
(efelo)e

OO0
@
AN

N _—=0)
DX

...also called a Multi-layer Perceptron (MLP)

Some terminology...

‘hidden’ layer
input’ layer
‘output’ layer

&y
o
\ 4

Q\ IAQ /O
X
ORORORS®

%

...also called a Multi-layer Perceptron (MLP)

this layer is a
fully connected Iayer’)
2

%
%
g

O O

O I‘Q ()
IR
%

AN
i

all pairwise neurons between layers are connected

SO IS th_is

e
D
LS

O

O

all pairwise neurons between layers are connected

W

How many neurons (perceptrons)?

How many weights (edges)?

—
Q

O
S

How many learnable parameters total?

O

Q\ IAQ /Q
X

How many neurons (perceptrons)? 4+2=0

How many weights (edges)?

How many learnable parameters total?

How many neurons (perceptrons)? 4+2=0

How many weights (edges)? (3x4)+(4x2)=20

<
K

O
O

How many learnable parameters total?

How many neurons (perceptrons)? 4+2=0

How many weights (edges)? (3x4)+(4x2)=20

O
®

O

&
LXK
Ve

§

\

)

@
O

’

How many learnable parameters total? 20+4+2=20

bias terms

Training perceptrons

Let's start easy

world's smallest perceptron!

St

Yy = wx
What does this look like?

world's smallest perceptron!

Learning a Perceptron

Given a set of samples and a Perceptron

{xia yz}
y = frer(T;w)

Estimate the parameters of the Perceptron

w

Learning a Perceptron

Given a set of samples and a Perceptron

1Zi, Vi }

y = fpEr(Z; W)
’A

what is this _
activation function?

Estimate the parameters of the Perceptron

w

Learning a Perceptron

Given a set of samples and a Perceptron

{xia yz}
Yy = fPEI;(fE; w)

what is this _

activation function? inear function! f(CE) — wa

Estimate the parameters of the Perceptron

w

Given training data:

x Y
10 | 10.1
2 1.9
3.0 | 34
1 1.1

What do you think the weight parameter is?

Y = W

Given training data:

x Y
10 | 10.1
2 1.9
3.0 | 34
1 1.1

What do you think the weight parameter is?
Yy = wx

not so obvious as the network gets more complicated so we use ...

An Incremental Learning Strategy

(gradient descent)

Given several examples

{(z1,11), (T2,92)5-- - (TN, YN)}

and a perceptron

el

Yy = W

An Incremental Learning Strategy

(gradient descent)

Given several examples

{(z1,11), (T2,92)5-- - (TN, YN)}

and a perceptron

A

Y = W

Modify weight W such that g gets ‘closer’ to Y

An Incremental Learning Strategy

(gradient descent)

Given several examples

{1, 91), (T2,92),-- -, (ZN,YN)}

and a perceptron

A

Yy = W

Modify weight W such that g gets ‘closer’ to

A~

\

perceptron perceptron true
parameter output label

An Incremental Learning Strategy

(gradient descent)

Given several examples

{(331,?/1)3 (T2,92), -+, (TN, YN)}

and a perceptron

A

Yy = W

Modify weight w such that ¢

A~

gets ‘closer’ to

perceptron perceptron what does true
parameter output this mean? label

Before diving into gradient descent, we need to understand ...

Loss Function
defines what iIs means to be
close t0 the true solution

YOU get to chose the loss function!

(some are better than others depending on what you want to do)

Squared Error (L2)

(a popular loss function) ((why?))

L1 Loss | 2 Loss

€9,y) = 19—y (3,y) = (5 —y)°

Zero-One Loss Hinge Loss
£€9,y) = 1] £(9,y) = max(0,1 —y - 9)

N
|
=,

back to the...

World’'s Smallest Perceptron!

Y = W

(a.k.a. line equation, linear regression)

function of ONE parameter!

L earning Strategy

(gradient descent)

Given several examples

{(991,?;1), (T2,92), -+, (TN, YN)}

and a perceptron

A

Yy = W

Modify weight W such that g gets ‘closer’ to

perceptron perceptron true
parameter output label

Code to train your perceptron:

for n=1...N
w=w+ (Yn — Y)%i;

just one line of code!

Now where does this come from?

GGradient descent

(partial) derivatives tell us how
much one variable affects another

Two ways to think about them:

KNobs on a machine

Slope of a function

1. Slope of a function:

O0f(x) Of(x)

Oz = Oy

describes the slope around
a point

2. Knobs on a machine;

describes how each 3f(3;) 8f(a:) ﬁf(iv)

‘knob’ affects the
output Owq Owo Ows

0f(z)

8’101

Aw1

small change in parameter Awl . output will change by

Gradient descent:

--‘\::\: : " / ,
.'.4-'. \'Y’r

=N

/

%
R
SR

A —

((» fixed-point on a function,
‘ move In the direction
opposite of the gradient

Given a

Gradient descent:

A

update rule:

w=w— Vw

Backpropagation

back to the...

World’'s Smallest Perceptron!

Y = W

(a.k.a. line equation, linear regression)

function of ONE parameter!

Training the world’'s smallest perceptron

This is just gradient
for n=1...N descent, that means. ..
w=w (yn — y)xi;

\h this should be the

gradient of the loss
function

dLl

—— ...I1s the rate at which this will change...

dw
1 - 3
L=—-(y—179)° <

2

the loss function

... per unit change of this

4

the weight parameter

Let’'s compute the derivative...

Compute the derivative

acd (1,
%—@{Q(y—y) }

) dwzx
dw
_(y — g)x p— vw just shorthana

>

(y

That means the weight update for gradient descent is:

w = W — V’U) move in direction of negative gradient

=w+ (y—9)z

Gradient Descent (world’s smallest perceptron)

For each sample

1Zi ¥i }

1. Predict
a. Forward pass i = wx;
b. Compute Loss Ei::EQH__gF
2
2. Update
. dLl; R
a.Back Propagation = = —(y; — 9)z; = Vw
w

b. Gradient update w=w— Vw

Training the world’'s smallest perceptron

for n=1...N

W= w (yn — y)xi;

world’s (second) smallest
perceptron!

function of two parameters!

Gradient Descent
For each sample {$%Zh}
1. Predict

a. Forward pass

we |ust need to compute partial
6. Compute LosSS derivatives for this network

a.Back Propagation

b. Gradient update

Derivative computation

%_i 1(_A)2 ﬁ_i 1(_'~)2}
Ow; Owy 2y Y Ows Ows 2y Y
N 00
= —(y—y)(r)—,w1 = —(y y)a,w2
n 827’ W; X4 . n 822 W; X4
= —(y—19) Jn =—(y—19) Jun
B L Owi 1 B . Owa T2
=—(y—179) Ywn =—(y—19) s
= —(y — 9)zr1 = Vuw, = —(y — §)z2 = Vw,

Why do we have partial derivatives how?

Derivative computation

%_i 1(_'~)2 ﬁ_i 1(_ﬂ)2}
8'11)1 - 8’11)1 2 Y Y 6’11)2 - 8’(1)2 2 Y g
_ -\ 97 B .\ 07
= —(y—y)(r).w1 = —(y—y)a,w2
n azz Wi X4 . n 82,& W; X4
=—(y—9) Jn =—(y—9) Jun
B w11 B .\ Qwao
=—(y—9) Ywn =—(y—9) 0s
= —(y — 9)z1 = Vw = —(y — 9)z2 = Vws
Gradient Update
w, = w; —NVw; wo = Wy — NVws

Gradient Descent
For each sample {xhlh}
1. Predict

a. Forward pass g = fmrp(zi; 0)

1 . |
_ A (side computation to track loss.
b . ComPUte LO SS ‘C’Z — E(y’b T y) not nee%ed for backprop)
two lines now
2. Update Vwy, = — (¥ — 9)Tu

| Vwsa; = —(y; —)2
a.Back Propagation
b. Gradient update -

(adjustable step\silz-e)j
.

We haven't seen a |ot of ‘propagation’ yet
because our perceptrons only had one layer...

multi-layer perceptron

function of FOUR parameters and FOUR layers!

sum activation activation activation

input weight weight weight

r — W — — W9 — w3 —

input hidden hidden output
layer 1 bl layer 2 layer 3 layer 4

sum

activation

hidden
layer 3

weight

w3

activation

output
layer 4

sum

activation

hidden
layer 3

weight

w3

activation

output
layer 4

sum activation

weight

(005,

activation

output
layer 4

,_f/-) . .
£ sum activation

ytion
weight weight weight
Wy W2 w3
“hidden . hidden
bl layer 2 layer 3

activation

output
layer 4

input

input
layer 1

sum activation v

weight weight
w1 — — W2

/ hidden hidden
bl layer 2 layer 3

sum activation

a1 = w1+ by
ag = ws - fi(w1 -z +b1)
a3 = ws - fo(wy - f1(wr -z + b))

sum activation activation

a1 = w1+ by
ag = ws - fi(w1 -z +b1)
a3 = w3 - fa(ws - fr(wy -z + b1))

sum activation activation

a1 = w1 -+ by
ag = ws - fi(w1 -z +b1)
a3 = w3 - fa(wsz - f1(wi - T + by))
y = fs(ws - fo(wa - fi(wy -2+ 01)))

Entire network can be written out as one long equation

y = fs(ws - fa(wa - fi(wy -z +01)))

We need to train the network:
What is known? What is unknown?

Entire network can be written out as a long equation

y = fas(ws - fa(we - fi(wy -z 4+ b1)))

A A
\\ S //

We need to train the network:
What is known? What is unknown?

Entire network can be written out as a long equation

Y = f3 w3 f2 wz f1 ’w1 37+b1)

activation function //
| - unknown

sometimes has
parameters

We need to train the network:
What is known? What is unknown?

Learning an MLP

Given a set of samples and a MLP
{Zs,Y: }
y = fmrp(z;0)

Estimate the parameters of the MLP

0 ={f, w,b}

Gradient Descent
For each random sample {whgh}

1. Predict

a. Forward pass g = fmre(zi;0)
b. Compute Loss

2. Update
oL

R vector of parameter partial derivatives

a.Back Propagation oL

b. Gradient update PR

vector of parameter update equations

SO we need to compute the partial derivatives

oL [OL OL OL oL
89 N _8’(1)3 8’(1)2 8’!1)1 8()_

Reme

Partia

mber,

—

/

L
derivative 8— describes. ..
6’11)1

w9

—

S0, how do you compute it”

affect...

w3

—

this
dOeS ~ #7/8
‘('\O\l\i__‘,#s—"‘"~

‘4 (loss layer)

Y

THE CHAIN RULE

According to the chain rule...

OL _ OL 9fs das
6’(1)3 - 6f3 80,3 8’(1)3

Intuitively, the effect of weight on loss function :

rest of the network = « f2 _— w3 ’—> g

depends on

depends on
8f3 depends on

Oag 9as L
s ofs

rest of the network f2 S w3 >_, :lj L(y, y/\)

8_[4 o oL 8f3 6&3
8’11)3 N 8f3 80,3 8’11)3

Chain Rule!

rest of the network f2 S w3 >_, g L(y, :g)

AL AL Ofs das
ng N afg; 80,3 ng
.\ 0f3 das

T _n(y o y) 8013 8?1)3
Just the partial

r
derivative of L2 loss
_ .,,.»-«»”’"’M

rest of the network f2 S w3 >_, g L(y’ :g)

0L L dfs das

(9_’11)3 N 6f3 80,3 ng L/\
_ (B A) 8f3 80,3 .
- % Y 60,3 8’11)3 \

Let's use a Sigmoid function

ds(z)
) — (@)1 - s(2))

rest of the network f2 S w3 >_, g L(y’ :g)

OL L dfs das

(9_’11)3 N 6f3 80,3 ng L/\
.\ 0fs Oag

= —n(y —9) Das s N

—n(y — 9)f3(1 — f3

Let's use a Sigmoid function

ds(z)
W) — (@)1 - s(2))

) 8&3

rest of the network f2 S w3 >_, :lj L(y, y/\)

8_[4 o oL 8f3 6&3
8’11)3 N 8f3 80,3 8’11)3

— —n(y — g) 2L 998
80,3 8’11)3
= —nfy —§)fs(1 —) 58

w3

— —n(y — ’g)fg(l — f3)f2

A |

——

oL B oL 8f3 30,3 6f2 80,2

6’11)2 N 8f3 80,3 8f2 80,2 8w2

oL (0L 0f310as 0fs as

8’102 6f3 8(1,3 |6f2 60,2 8’11)2

already computed.
re-use (propagate)!

THE CHAIN RULE

A.K.A. BACKPROPAGATION

The chain rule says...

depends on

depends on depends on depends on depends on depends on

b depends on
1

c‘)L _ 6L 6f3 8a3 afg 60,2 6f1 8(1,1
6w1 6f3 8(1,3 8f2 60,2 8f1 8611 8’(1)1

The chain rule says...

depends on

depends on depends on depends on depends on depends on

b depends on
1

OL AL 8fs3 Baz Of-

Ow 0f3 daz Jf2 Oag

already computed.
re-use (propagate)!

OJag 0f1 Oaq
8f1 8(1,1 8’11)1

6&3

8’w3

Oasg 0f2 Oas

oL [OL Ofs
8w3 C_ 8f3 8(1,3
oL (9L 0fs
8’(1)2 N 8f3 80,3
oL OL Ofs

0 f2 Oas Owo
60,3 8f2 60,2 8f1 60,1

Ow, Ofs Oas
L 0L Ofs

8f2 8&2 8f1 8&1 8’!01
8&3 8f2 80,2 8f1 8&1

b~ Ofs Oas

8f2 8(1,2 8f1 8(1,1 0b

OL AL Ofs das

Ows Ofs Oas Ows

oL

0L 0fs Oas 0f2|0asz

df3 0az Of2 Oas |Igw2
3 dag 0fq0ag Of1 Oay

8f3 80,3 8f2 8&2 \8f1 8(1,1 8’11)1

8_[.: o oL 8f3 8&3 8f2 6&2 8f1 8(1,1
0b N 8f3 8&3 8f2 8(1,2 8f1 8@1 0b

OL AL Ofs das

Ows Ofs Oas Ows
% 0L 0f3 0az 0f2 Oaz
8’(1)2 N 8f3 30,3 3f2 80,2 8w2

oL 3 0ds 2 U429 1 Paq

Ow; ,| 0fs dagz dfz Baz Of1 ay g’uh
0L 3 daz 0fg Oas 0f1 Paq

b | 8f5 8as OFy Bay Ofy Oay \ab

Gradient Descent
For each example sample
1. Predict
a. Forward pass

b. Compute Loss

2. Update

a.Back Propagation

b. Gradient update

{iﬂi, Yi }

Yy = fMLP(CEi;Q)
L,

oL 0L Of3 Das

8103 N 8f3 8&3 8w3

OL 0L Of3 a3 0f2 Oas

8102 B 8f3 80,3 8f2 80,2 ng

OL 0L 0f3 0as 0f Oag 0f1 Day

8101 B 8f3 80,3 8f2 30,2 8f1 30,1 8’LU1
0L 0L 0f3 daz dfs Dag Of1 day
O0b B 8f3 80,3 8f2 80,2 8f1 80,1 ob

W3 = W3 — an;;,
wo = wg — NVwa
w1 = w1 — anl

b=b—nVb

Gradient Descent
For each example sample
1. Predict
a. Forward pass
b. Compute Loss
2. Update

a.Back Propagation

b. Gradient update

i, Vi }

vector of parameter partial derivatives

9<—9+ng—§

vector of parameter update equations

Stochastic gradient
descent

What we are truly minimizing:

N
min > L furr (60)

The gradient is:

What we are truly minimizing:

N
min Z L fur (X)
i=1
The gradient is:

OL(Yi, fmrp (X;))
00

-

Il
p—

L

What we use for gradient update is:

What we are truly minimizing:

N
min Z L fur (X)
i=1
The gradient is:

OL(Yi, fmrp (X;))
00

-

Il
p—

L

What we use for gradient update is:

OL(Yi, fmrp(Xi))
00

for some i

Stochastic Gradient Descent

For each example sample {thH}

1. Predict
a. Forward pass 9 = fmre(zs;0)
b. Compute Loss Li
2. Update
| oL
a.Back Propagation 90
oL
, 0« 0+n-
b.Gradient update 00

vector of parameter update equations

How do we select which sample?

How do we select which sample?
» Select randomly!

Do we need to use only one sample?

How do we select which sample?
» Select randomly!
Do we need to use only one sample?

* You can use a minibatch of size B < N.

Why not do gradient descent with all samples?

How do we select which sample?
» Select randomly!
Do we need to use only one sample?

* You can use a minibatch of size B < N.

Why not do gradient descent with all samples?
* |t’s very expensive when N is large (big data).

Do | lose anything by using stochastic GD?

How do we select which sample?
» Select randomly!
Do we need to use only one sample?

* You can use a minibatch of size B < N.

Why not do gradient descent with all samples?
* |t’s very expensive when N is large (big data).
Do | lose anything by using stochastic GD?

« Same convergence guarantees and complexity!
» Better generalization.

