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• Motion magnification using optical flow.

• Image alignment.

• Lucas-Kanade alignment.

• Baker-Matthews alignment.

• Inverse alignment.

• KLT tracking.

• Mean-shift tracking.

• Modern trackers.

Overview of today’s lecture



Slide credits

Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).



Motion magnification using 
optical flow



original motion-magnified

How would you achieve this effect?

• Compute optical flow from frame to frame.
• Magnify optical flow velocities.
• Appropriately warp image intensities.



naïvely motion-magnified motion-magnified

How would you achieve this effect?

• Compute optical flow from frame to frame.
• Magnify optical flow velocities.
• Appropriately warp image intensities.

In practice, many additional steps 
are required for a good result.



Some more examples



Some more examples



Image alignment











How can I find in the image?



Idea #1: Template Matching

Slow, combinatory, global solution



Idea #2: Pyramid Template Matching

Faster, combinatory, locally optimal



Idea #3: Model refinement

Fastest, locally optimal

(when you have a good initial solution)



Some notation before we get into the math…

2D image transformation

2D image coordinate

Parameters of the transformation

Translation

Affine

Pixel value at a coordinate

Warped image
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Some notation before we get into the math…

2D image transformation

2D image coordinate

Parameters of the transformation

Translation

transform coordinate

Affine

Pixel value at a coordinate
affine transform

coordinate

Warped image

can be written in matrix form when linear
affine warp matrix can also be 3x3 when last row is [0 0 1]



takes a ________ as input and returns a _______

returns a ______ of dimension ___ x ___

where N is _____ for an affine model

this warp changes pixel values?



Image alignment
(problem definition)

warped image template image

Find the warp parameters p such that the 
SSD is minimized



Find the warp parameters p such that the 
SSD is minimized



Image alignment
(problem definition)

warped image template image

Find the warp parameters p such that the 
SSD is minimized

How could you find a solution to this problem?



This is a non-linear (quadratic) function of a 
non-parametric function!

(Function I is non-parametric)

Hard to optimize

What can you do to make it easier to solve?



Hard to optimize

What can you do to make it easier to solve?

assume good initialization, 
linearized objective and update incrementally

This is a non-linear (quadratic) function of a 
non-parametric function!

(Function I is non-parametric)



Lucas-Kanade alignment



If you have a good initial guess p…

can be written as …

(a small incremental adjustment)

(pretty strong assumption)

(this is what we are solving for now)



How can we linearize the function I for a really small perturbation of p? 

This is still a non-linear (quadratic) function of a 
non-parametric function!

(Function I is non-parametric)



How can we linearize the function I for a really small perturbation of p? 

Taylor series approximation!

This is still a non-linear (quadratic) function of a 
non-parametric function!

(Function I is non-parametric)



Multivariable Taylor Series Expansion
(First order approximation)



Multivariable Taylor Series Expansion
(First order approximation)

Recall:

chain rule

short-hand

short-hand

)

)



Linear approximation

Multivariable Taylor Series Expansion
(First order approximation)

What are the unknowns here?



Linear approximation

Multivariable Taylor Series Expansion
(First order approximation)

Now, the function is a linear function of the unknowns



is a function of _____ variables

is a _________ of dimension ___ x ___

is a _________ of dimension ___ x ___

is a __________ of dimension ___ x ___

output of



The Jacobian

Affine transform

Rate of change of the warp

(A matrix of partial derivatives)



is a _________ of dimension ___ x ___

is a _________ of dimension ___ x ___

is a _________ of dimension ___ x ___





pixel coordinate
(2 x 1)



pixel coordinate
(2 x 1)

image intensity
(scalar)
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warp function
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pixel coordinate
(2 x 1)

image intensity
(scalar)

warp function
(2 x 1)

warp parameters
(6 for affine)
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pixel coordinate
(2 x 1)

image intensity
(scalar)

warp function
(2 x 1)

warp parameters
(6 for affine)

image gradient
(1 x 2)

Partial derivatives of warp function
(2 x 6)

incremental warp
(6 x 1)



pixel coordinate
(2 x 1)

image intensity
(scalar)

warp function
(2 x 1)

warp parameters
(6 for affine)

image gradient
(1 x 2)

Partial derivatives of warp function
(2 x 6)

incremental warp
(6 x 1)

template image intensity
(scalar)

When you implement this, you will compute everything in parallel and store as matrix … don’t loop over x!



Summary
(of Lucas-Kanade Image Alignment)

Solve for increment

Taylor series approximation
Linearize

Difficult non-linear optimization problem

Assume known approximate solution

Strategy:

Problem:

then solve for 

warped image template image



OK, so how do we solve this?



Another way to look at it…

(moving terms around)

Have you seen this form of optimization problem before?

vector of 
variables

vector of
constants constant



Another way to look at it…

How do you solve this?

Looks like

variableconstant constant



Least squares approximation

is solved by

is optimized when

where

Applied to our tasks:

after applying



Solve for increment

Taylor series approximation
Linearize

Difficult non-linear optimization problem

Assume known approximate solution

Strategy:

Solve:

warped image template image

Solution:
Solution to least squares 

approximation

Hessian



Gauss-Newton gradient decent 
non-linear optimization!

This is called…



1. Warp image

2. Compute error image

3. Compute gradient

4. Evaluate Jacobian

5. Compute Hessian

6. Compute

7. Update parameters

Lucas Kanade (Additive alignment)

Just 8 lines of code!

x’coordinates of the warped image 
(gradients of the warped image)



Baker-Matthews alignment



Image Alignment
(start with an initial solution, match the image and template)



Additive Alignment

incremental perturbation of parameters

Image Alignment Objective Function

Given an initial solution…several possible formulations



Compositional Alignment

incremental warps of image

Image Alignment Objective Function

Given an initial solution…several possible formulations

Additive Alignment

incremental perturbation of parameters



Additive strategy

go back, adjust and 
try again

first shot
second shot



Compositional strategy

start from here
first shot

second shot



Additive

I(x)

W(x;p)



T(x)Additive

I(x)

W(x;p+Dp)

W(x;p)



W(x;0 + Dp) = W(x;Dp) W(x;p)

Compositional

I(x)

T(x)Additive

I(x)

W(x;p+Dp)

W(x;p)



W(x;0 + Dp) = W(x;Dp)

T(x)

W(x;p)

W(x;p) o W(x;Dp)Compositional

I(x)

T(x)Additive

I(x)

W(x;p)

W(x;p+Dp)



Compositional Alignment

Assuming an initial solution p and a compositional warp increment

Original objective function (SSD)



Compositional Alignment

Assuming an initial solution p and a compositional warp increment

Original objective function (SSD)

Another way to write the composition Identity warp



Compositional Alignment

Assuming an initial solution p and a compositional warp increment

Original objective function (SSD)

Another way to write the composition

Skipping over the derivation…the new update rule is

Identity warp



So what’s so great about this compositional form?



linearized form linearized form

Additive Alignment Compositional Alignment



The Jacobian is constant.
Jacobian can be precomputed!

linearized form linearized form

Jacobian of W(x;p) Jacobian of 
W(x;0)

Additive Alignment Compositional Alignment



Compositional Image Alignment

Minimize

W(x;0 + Dp) = W(x;Dp)

T(x)

W(x;p)

W(x;p) o W(x;Dp)

Jacobian is simple and can be precomputed



1. Warp image

2. Compute error image

3. Compute gradient

4. Evaluate Jacobian

5. Compute Hessian

6. Compute

7. Update parameters

Lucas Kanade (Additive alignment)



1. Warp image

2. Compute error image

3. Compute gradient

4. Evaluate Jacobian

5. Compute Hessian

6. Compute

7. Update parameters

Shum-Szeliski (Compositional alignment)



Any other speed up techniques?



Inverse alignment



Why not compute warp updates on the template?

Additive Alignment Compositional Alignment



Why not compute warp updates on the template?

Additive Alignment Compositional Alignment

What happens if you let the template 
be warped too?

Inverse Compositional Alignment

)



W(x;0 + Dp) = W(x;Dp)

T(x)

W(x;p)

W(x;p) o W(x;Dp)

T(x)W(x;0 + Dp) = W(x;Dp)W(x;p)

Compositional

Inverse compositional
W(x;p) o W(x;Dp)-1

I(x)

I(x)



Compositional strategy

start from here
first shot

second shot



Inverse Compositional strategy

first shot
move the hole



So what’s so great about this inverse compositional form?



Inverse Compositional Alignment
Minimize

Solution

Update

can be precomputed from template!

))



Properties of inverse compositional alignment

Jacobian can be precomputed
It is constant - evaluated at W(x;0)

Gradient of template can be precomputed
It is constant

Hessian can be precomputed

Warp must be invertible

(main term that needs to be computed)



1. Warp image

2. Compute error image

3. Compute gradient

4. Evaluate Jacobian

5. Compute Hessian

6. Compute

7. Update parameters

Lucas Kanade (Additive alignment)



1. Warp image

2. Compute error image

3. Compute gradient

4. Evaluate Jacobian

5. Compute Hessian

6. Compute

7. Update parameters

Shum-Szeliski (Compositional alignment)



1. Warp image

2. Compute error image

3. Compute gradient

4. Evaluate Jacobian

5. Compute Hessian

6. Compute

7. Update parameters

Baker-Matthews (Inverse Compositional alignment)



Algorithm Efficient Authors

Forwards Additive No Lucas, Kanade

Forwards 
compositional No Shum, Szeliski

Inverse Additive Yes Hager, Belhumeur

Inverse 
Compositional Yes Baker, Matthews



Kanade-Lucas-Tomasi (KLT) 
tracker



https://www.youtube.com/watch?v=rwIjkECpY0M



Feature-based tracking

How should we select the ‘small images’ (features)?

How should we track them from frame to frame?

Up to now, we’ve been aligning entire images 
but we can also track just small image regions too!

(sometimes called sparse tracking or sparse alignment)



An Iterative Image Registration Technique 
with an Application to Stereo Vision.

1981

Lucas Kanade

Detection and Tracking of Feature Points.

1991

Kanade Tomasi

Good Features to Track.

1994

Tomasi Shi

History of the 

Kanade-Lucas-Tomasi
(KLT) Tracker

The original KLT algorithm



Method for aligning 
(tracking) an image patch

Kanade-Lucas-Tomasi

Method for choosing the 
best feature (image patch) 

for tracking

Lucas-Kanade Tomasi-Kanade
How should we select features?How should we track them from frame 

to frame?



What are good features for tracking?



What are good features for tracking?

Intuitively, we want to avoid smooth 
regions and edges. 

But is there a more is principled way to 
define good features?



Can be derived from the tracking algorithm

What are good features for tracking?



Can be derived from the tracking algorithm

What are good features for tracking?

‘A feature is good if it can be tracked well’



Recall the Lucas-Kanade image alignment method:

incremental update

error function (SSD)



Recall the Lucas-Kanade image alignment method:

incremental update

error function (SSD)

linearize



Recall the Lucas-Kanade image alignment method:

incremental update

error function (SSD)

linearize

Gradient update



Recall the Lucas-Kanade image alignment method:

incremental update

error function (SSD)

linearize

Gradient update

Update



Stability of gradient decent iterations depends on …



Stability of gradient decent iterations depends on …

Inverting the Hessian

When does the inversion fail?



Stability of gradient decent iterations depends on …

Inverting the Hessian

When does the inversion fail?

H is singular. But what does that mean?



Above the noise level

Well-conditioned

both Eigenvalues are large

both Eigenvalues have similar magnitude



Concrete example: Consider translation model

Hessian

How are the eigenvalues related to image content? 

←when is this singular?



interpreting eigenvalues

l1

l2

l2 >> l1

l1 >> l2

What kind of image patch 
does each region represent?



interpreting eigenvalues
‘horizontal’
edge

‘vertical’ 
edge

flat

l1

l2

l2 >> l1

l1 >> l2

l1 ~ l2

‘corner’



interpreting eigenvalues

flat

‘corner’

l1

l2

l2 >> l1

l1 >> l2

l1 ~ l2

‘horizontal’
edge

‘vertical’ 
edge



What are good features for tracking?



What are good features for tracking?

‘big Eigenvalues means good for tracking’



KLT algorithm
1. Find corners satisfying

2. For each corner compute displacement to next frame using the 
Lucas-Kanade method

3. Store displacement of each corner, update corner position

4. (optional) Add more corner points every M frames using 1

5. Repeat 2 to 3 (4)

6. Returns long trajectories for each corner point



Mean-shift algorithm





Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm



Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Find the region of 
highest density



Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Pick a point



Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Draw a window



Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the 
(weighted) mean



Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window
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A ‘mode seeking’ algorithm

Compute the mean
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Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window



Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Compute the mean



Mean Shift Algorithm
Fukunaga & Hostetler (1975)

A ‘mode seeking’ algorithm

Shift the window

To understand the theory behind this we need to understand…



Kernel density estimation



Kernel Density Estimation
A method to approximate an underlying PDF from samples

Put ‘bump’ on every sample to approximate the PDF

To understand the mean shift algorithm …

samples (+)

bumps

sum of bumps



probability density function
1      2      3      4      5      6      7      8      9    10

cumulative density function

p(x)

Say we have some hidden PDF…



ra
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om
ly

 s
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We can draw samples, 
using the CDF…
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samples



samples

Now to estimate the ‘hidden’ PDF
place Gaussian bumps on the samples…



samples

discretized ‘bump’



samples



samples



1      2      3      4      5      6      7      8      9    10

samples

Kernel Density 
Estimate 

approximates the 
original PDF



Kernel Density Estimation
Approximate the underlying PDF from samples from it

Put ‘bump’ on every sample to approximate the PDF

Gaussian ‘bump’ aka ‘kernel’

but there are many types of kernels!

For example…



Kernel Function

returns the ‘distance’ between two points



Epanechnikov kernel

Uniform kernel

Normal kernel

These are all radially symmetric kernels



Radially symmetric kernels

profile

…can be written in terms of its profile



Connecting KDE and the Mean 
Shift Algorithm



Mean-Shift Tracking
Given a set of points:

and a kernel:

Find the mean sample point:



Mean-Shift Algorithm

While

Initialize

1. Compute mean-shift

2. Update

Where does this algorithm come from?

shift values becomes really small

place we start

compute the ‘mean’

compute the ‘shift’

update the point



While

Initialize

Where does this algorithm come from?

Where does this 
come from?

Mean-Shift Algorithm

2. Update

1. Compute mean-shift



Kernel density estimate 
(radially symmetric kernels)

Gradient of the PDF is related to the mean shift vector

How is the KDE related to the mean shift algorithm?

The mean shift vector is a ‘step’ in the direction of the gradient of the KDE

Recall:

We can show that:

can compute probability for any point using the KDE!

mean-shift algorithm is maximizing the objective function



In mean-shift tracking, we are trying to find this

which  means we are trying to…



We are trying to optimize this:

usually non-linear

How do we optimize this non-linear function?

non-parametric

find the solution that has the highest probability



We are trying to optimize this:

How do we optimize this non-linear function?
compute partial derivatives … gradient descent!

usually non-linear non-parametric



Compute the gradient



Gradient

Expand the gradient (algebra)



Gradient

Expand gradient



Gradient

Expand gradient

Call the gradient of the kernel function g



Gradient

change of notation
(kernel-shadow pairs)

Expand gradient

keep this in memory:



multiply it out

too long! 
(use short hand notation)



multiply by one!

collecting like terms…

What’s happening here?



The mean shift is a ‘step’ in the direction of the gradient of the KDE

mean shift!

mean shift

Can interpret this to be
gradient ascent with 

data dependent step size

constant

Let



Mean-Shift Algorithm

While

Initialize

1. Compute mean-shift

2. Update

gradient with 
adaptive step size

Just 5 lines of code!



Everything up to now has been about 
distributions over samples…



Mean-shift tracker



Dealing with images
Pixels for a lattice, spatial density is the same everywhere!

What can we do?



Consider a set of points:

Sample mean:

Mean shift:

Associated weights:

same

same



Mean-Shift Algorithm
(for images)

While

Initialize

1. Compute mean-shift

2. Update



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



For images, each pixel is point with a weight



Finally… mean shift tracking in video!



Frame 1 Frame 2

‘target’

center coordinate 
of target

center coordinate 
of candidate

Goal: find the best candidate location in frame 2

Use the mean shift algorithm 
to find the best candidate location

‘candidate’
there are many ‘candidates’ but only one ‘target’



Non-rigid object tracking

hand tracking



Target

Compute a descriptor for the target



Target Candidate

Search for similar descriptor in neighborhood in next frame



Target

Compute a descriptor for the new target



Target Candidate

Search for similar descriptor in neighborhood in next frame



How do we model the target and candidate regions?



Modeling the target
M-dimensional target descriptor

A normalized 
color histogram

(weighted by distance)
Kronecker delta 

function

function of inverse 
distance
(weight)

Normalization 
factor

(centered at target center)

a ‘fancy’ (confusing) way to write a weighted histogram

sum over 
all pixels

quantization 
function

bin ID



Modeling the candidate

M-dimensional candidate descriptor

(centered at location y)

bandwidth

a weighted histogram at y



Similarity between 
the target and candidate

Bhattacharyya Coefficient

Just the Cosine distance between two unit vectors

Distance function

⇢(y) = cos ✓y =

p
p(y)

Tp
q

k
p

p(y)kkpqk
=

X

m

p
pm(y)qm
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Now we can compute the similarity between 
a target and multiple candidate regions



target

similarity over imageimage



target

similarity over imageimage

we want to find this peak



Objective function

Assuming a good initial guess

Linearize around the initial guess (Taylor series expansion)

derivativefunction at specified value

same as



Remember 
definition of this?

Linearized objective

Fully expanded



where

Does not depend on unknown y Weighted kernel density estimate

Weight is bigger when

Fully expanded linearized objective

Moving terms around…



OK, why are we doing all this math?



We want to maximize this



where

Fully expanded linearized objective

We want to maximize this



where

Fully expanded linearized objective

doesn’t depend on unknown y

We want to maximize this



where

Fully expanded linearized objective

doesn’t depend on unknown y

We want to maximize this

only need to 
maximize this!



where

Fully expanded linearized objective

doesn’t depend on unknown y

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

We want to maximize this



the new sample of mean of this KDE is

(this was derived earlier)

(new candidate 
location)



Mean-Shift Object Tracking

1. Initialize location
Compute
Compute 

2. Derive weights

3. Shift to new candidate location (mean shift)

4. Compute

5. If                             return
Otherwise                      and go back to 2

For each frame:



Target

Compute a descriptor for the target



Target Candidate

Search for similar descriptor in neighborhood in next frame



Target

Compute a descriptor for the new target



Target Candidate

Search for similar descriptor in neighborhood in next frame





Modern trackers







References

Basic reading:
• Szeliski, Sections 4.1.4, 5.3, 8.1.


