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Overview of today’s lecture

• Image downsampling.

• Aliasing.

• Gaussian image pyramid.

• Laplacian image pyramid.

• Fourier series.

• Frequency domain.

• Fourier transform.

• Frequency-domain filtering.

• Revisiting sampling.
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Image downsampling



This image is too big to fit on the screen. 
How would you reduce it to half its size?



delete even rows
delete even columns

1/2

1/4

1/8

Throw away half the rows and columns

What is the problem with this approach?

Naïve image downsampling

delete even rows
delete even columns



1/2 1/4 (2x zoom) 1/8 (4x zoom)

Naïve image downsampling

Why is the 1/8 image so pixelated (and do you know what this effect is called)?



Aliasing



Reminder

Images are a discrete, or sampled, representation of a continuous world



Sampling
Very simple example: a sine wave

How would you discretize this signal?



Sampling
Very simple example: a sine wave



Sampling
Very simple example: a sine wave

Can I take as many samples as I want?
How many samples should I take?



Sampling
Very simple example: a sine wave

Can I take as few samples as I want?
How many samples should I take?



Undersampling
Very simple example: a sine wave

Unsurprising effect: information is lost.



Undersampling
Very simple example: a sine wave

Unsurprising effect: information is lost.
Surprising effect: can confuse the signal with one of lower frequency.



Undersampling
Very simple example: a sine wave

Unsurprising effect: information is lost.
Surprising effect: can confuse the signal with one of lower frequency.
Note: we could always confuse the signal with one of higher frequency.



Aliasing
Fancy term for: Undersampling can disguise a signal as one of a lower frequency

Unsurprising effect: information is lost.
Surprising effect: can confuse the signal with one of lower frequency.
Note: we could always confuse the signal with one of higher frequency.



Aliasing in textures



Aliasing in photographs
This is also known as “moire”



Temporal aliasing



Temporal aliasing





Temporal aliasing



Anti-aliasing
How would you deal with aliasing?



Anti-aliasing
How would you deal with aliasing?

Approach 1: Oversample the signal



Anti-aliasing in textures

aliasing artifacts anti-aliasing by oversampling



Anti-aliasing
How would you deal with aliasing?

Approach 1: Oversample the signal

Approach 2: Smooth the signal
• Remove some of the detail effects that cause aliasing.
• Lose information, but better than aliasing artifacts.

How would you smooth a signal?



Gaussian filter
delete even rows

delete even columns

1/2

1/4

1/8

Apply a smoothing filter first, then throw away half the
rows and columns

Better image downsampling

Gaussian filter
delete even rows

delete even columns



1/2 1/4 (2x zoom) 1/8 (4x zoom)

Better image downsampling



1/2 1/4 (2x zoom) 1/8 (4x zoom)

Naïve image downsampling



Anti-aliasing

Question 1: How much smoothing do I need to do to avoid 
aliasing?

Question 2: How many samples do I need to take to 
avoid aliasing?

Answer to both: Enough to reach the Nyquist limit. (We’ll see 
what this means soon.)



Gaussian image pyramid



The name of this sequence of subsampled images

Gaussian image pyramid



filter

sample

filter

sample

Constructing a Gaussian pyramid

repeat:

filter

subsample

until min resolution reached

Algorithm

sample

Question: How much bigger than the original image is the whole pyramid?



filter

sample

filter

sample

Constructing a Gaussian pyramid

Algorithm

sample

Question: How much bigger than the original image is the whole pyramid?

Answer: Just 4/3 times the size of the original image! (How did I come up with this number?)

repeat:

filter

subsample

until min resolution reached



What happens to the details of the image?

Some properties of the Gaussian pyramid



What happens to the details of the image?
• They get smoothed out as we move to 

higher levels.

What is preserved at the higher levels?

Some properties of the Gaussian pyramid



What happens to the details of the image?
• They get smoothed out as we move to 

higher levels.

What is preserved at the higher levels?
• Mostly large uniform regions in the 

original image.

How would you reconstruct the original 
image from the image at the upper level?

Some properties of the Gaussian pyramid



What happens to the details of the image?
• They get smoothed out as we move to 

higher levels.

What is preserved at the higher levels?
• Mostly large uniform regions in the 

original image.

How would you reconstruct the original 
image from the image at the upper level?
• That’s not possible.

Some properties of the Gaussian pyramid



Blurring is lossy

What does the residual look like?

level 0 level 1 (before downsampling)



Blurring is lossy

- =

level 0 level 1 (before downsampling) residual

Can we make a pyramid that is lossless?



Laplacian image pyramid



At each level, retain the residuals instead of 
the blurred images themselves.

Can we reconstruct the original image using 
the pyramid?

Laplacian image pyramid



At each level, retain the residuals instead of 
the blurred images themselves.

Can we reconstruct the original image using 
the pyramid?
• Yes we can!

What do we need to store to be able to 
reconstruct the original image?

Laplacian image pyramid



Let’s start by looking at just one level

= +

level 0 residual

Does this mean we need to store both residuals and the blurred copies of the original?

level 1 (upsampled)



Constructing a Laplacian pyramid

repeat:

filter

subsample

until min resolution reached

Algorithm

compute residual



Constructing a Laplacian pyramid

repeat:

filter

subsample

until min resolution reached

Algorithm

compute residual

What is this part?



Constructing a Laplacian pyramid

repeat:

filter

subsample

until min resolution reached

Algorithm

compute residual

It’s a Gaussian 
pyramid.



repeat:

upsample

sum with residual

until orig resolution reached

Algorithm

Reconstructing the original image



Gaussian vs Laplacian Pyramid
Shown in opposite 

order for space.

Which one takes 
more space to store?



Why is it called a Laplacian pyramid?



As with derivative, we can combine Laplace filtering with Gaussian filtering

Reminder: Laplacian of Gaussian (LoG) filter

Laplacian of 
Gaussian

output

input

“zero crossings” at edges



-

unit Gaussian Laplacian

Difference of Gaussians approximates the Laplacian

Why is it called a Laplacian pyramid?

- =



Why Reagan?



Why Reagan?

The Laplacian Pyramid as a Compact 
Image Code (1983)

Peter J. Burt , Edward H. Adelson

Ronald Reagan was 
President when the 
Laplacian pyramid 

was invented



Still used extensively



input image

user-provided maskforeground details enhanced, background details reduced

Still used extensively



Other types of pyramids
Steerable pyramid: At each level keep multiple 
versions, one for each direction.

Wavelets: Huge area in image processing 
(see 18-793).



What are image pyramids used for?
image blendingmulti-scale texture mapping

focal stack compositing denoising

multi-scale detection multi-scale registration

image compression



Some history



Who is this guy?



What is he famous for?

Jean Baptiste Joseph Fourier 
(1768-1830)



What is he famous for?

Jean Baptiste Joseph Fourier 
(1768-1830)

‘Any univariate function can be rewritten as a 
weighted sum of sines and cosines of different 
frequencies.’

The Fourier series claim (1807):

… and apparently also for the discovery 
of the greenhouse effect



Is this claim true?

Jean Baptiste Joseph Fourier 
(1768-1830)

‘Any univariate function can be rewritten as a 
weighted sum of sines and cosines of different 
frequencies.’

The Fourier series claim (1807):



Is this claim true?

Jean Baptiste Joseph Fourier 
(1768-1830)

‘Any univariate function can be rewritten as a 
weighted sum of sines and cosines of different 
frequencies.’

The Fourier series claim (1807):

Well, almost.
• The theorem requires additional conditions.
• Close enough to be named after him.
• Very surprising result at the time.



Is this claim true?

Jean Baptiste Joseph Fourier 
(1768-1830)

‘Any univariate function can be rewritten as a 
weighted sum of sines and cosines of different 
frequencies.’

The Fourier series claim (1807):

Well, almost.
• The theorem requires additional conditions.
• Close enough to be named after him.
• Very surprising result at the time.

Malus Lagrange Legendre Laplace

The committee 
examining his paper 

had expressed 
skepticism, in part due 

to not so rigorous 
proofs



Fourier series



Fourier’s claim: Add enough of these to get any periodic signal you want!

Basic building block



Fourier’s claim: Add enough of these to get any periodic signal you want!

amplitude

angular
frequency

variable
phase

sinusoid

Basic building block



How would you generate this function?

Examples

= +? ?
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square wave

=
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=

+? ?

square wave

≈



How would you generate this function?
Examples

=

+? ?

square wave

≈



How would you generate this function?
Examples

=

+? ?

square wave
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How would you generate this function?
Examples

=

+? ?

square wave

≈



How would you generate this function?
Examples

=

+? ?

square wave

≈

How would you express 
this mathematically?



Examples

square wave

=

infinite sum of sine waves

How would could you visualize this in the frequency domain?



Examples

square wave

=

infinite sum of sine waves

magnitude

frequency



Frequency domain



frequency

amplitude

Visualizing the frequency spectrum



frequency

amplitude

Visualizing the frequency spectrum
Recall the temporal domain visualization

+=



frequency

amplitude

Visualizing the frequency spectrum
Recall the temporal domain visualization

+=

How do we plot ...



frequency

amplitude

Visualizing the frequency spectrum
Recall the temporal domain visualization

+=



frequency

amplitude

Visualizing the frequency spectrum
Recall the temporal domain visualization

+=



not visualizing the 
symmetric negative part

Need to understand this to 
understand the 2D version!

frequency

amplitude

Visualizing the frequency spectrum

What is at zero 
frequency?

Recall the temporal domain visualization

+=



not visualizing the 
symmetric negative part

Need to understand this to 
understand the 2D version!

frequency

amplitude

Visualizing the frequency spectrum

signal average (zero 
for a sine wave with 

no offset)

Recall the temporal domain visualization

+=



Spatial domain visualization Frequency domain visualization

1D

2D

Examples

?



Spatial domain visualization Frequency domain visualization

1D

2D

Examples

What do the three dots 
correspond to?



Spatial domain visualization Frequency domain visualization

Examples

?



Spatial domain visualization Frequency domain visualization

Examples



How would you generate this image with sine waves?

Examples



How would you generate this image with sine waves?

Examples

Has both an x and 
y components



Examples

=+ ?



Examples

=+

?



Examples

=+



Fourier’s claim: Add enough of these to get any periodic signal you want!

amplitude

angular
frequency

variable
phase

sinusoid

Basic building block

What about non-
periodic signals?



Fourier transform



Recalling some basics

rectangular
coordinates

Complex numbers have two parts:

what‘s this? what‘s this?



Recalling some basics

rectangular
coordinates

Complex numbers have two parts:

real imaginary



Recalling some basics

rectangular
coordinates

polar 
coordinates

Complex numbers have two parts:

real imaginary

Alternative reparameterization:

how do we compute these?

polar transform



Recalling some basics

rectangular
coordinates

polar 
coordinates

Complex numbers have two parts:

real imaginary

Alternative reparameterization:

polar transform

polar transform



Recalling some basics

rectangular
coordinates

polar 
coordinates

Complex numbers have two parts:

real imaginary

Alternative reparameterization:

polar transform

polar transform

How do you write 
these in exponential 

form?



Recalling some basics

rectangular
coordinates

polar 
coordinates

Complex numbers have two parts:

real imaginary

Alternative reparameterization:

or 
equivalentlypolar transform

exponential 
form

how did we get this?



This will help us understand the Fourier transform equations

Recalling some basics

rectangular
coordinates

polar 
coordinates

Complex numbers have two parts:

real imaginary

Alternative reparameterization:

or 
equivalentlypolar transform

exponential 
form

Euler’s formula



Fourier transform
Fourier transform

di
sc

re
te

co
nt

in
uo

us

inverse Fourier transform

Where is the connection to the "summation of sine waves" idea?



Where is the connection to the "summation of sine waves" idea?

wave componentsscaling parameter

sum over frequencies

Euler’s formula

Fourier transform

<latexit sha1_base64="ni3974t4ikCoT2fcErTlQJVSlac="></latexit>
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Fourier transform pairs
spatial domain frequency domain

Note the symmetry: 
duality property of 
Fourier transform



Computing the discrete Fourier transform (DFT)



Computing the discrete Fourier transform (DFT)

is just a matrix multiplication:

In practice this is implemented using the fast Fourier transform (FFT) algorithm.



Fourier transforms of natural images

original amplitude phase



Fourier transforms of natural images

cheetah phase with zebra amplitude

Image phase matters!

zebra phase with cheetah amplitude



Frequency-domain filtering



Convolution in spatial domain is equivalent to multiplication in frequency domain!

The convolution theorem
The Fourier transform of the convolution of two functions is the product of their Fourier 
transforms:

The inverse Fourier transform of the product of two Fourier transforms is the convolution 
of the two inverse Fourier transforms:



What do we use convolution for?



Convolution for 1D continuous signals

Definition of linear shift-invariant filtering as convolution:

filtered signal input signalfilter

Using the convolution theorem, we can interpret and implement all types of linear 
shift-invariant filtering as multiplication in frequency domain.

Why implement convolution in frequency domain?



=
filter kernel

=

Spatial domain filtering

Frequency domain filtering

Fourier transform inverse Fourier transform



Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian 
filter

Box 
filter

Revisiting blurring



Gaussian blur



Box blur



More filtering examples

?

?

filters shown 
in frequency-

domain



More filtering examples
low-pass

band-pass
filters shown 
in frequency-

domain



high-pass

?

More filtering examples



high-pass

More filtering examples



More filtering examples

frequency magnitude

original image low-pass filter

?



More filtering examples

frequency magnitude

original image low-pass filter



More filtering examples

frequency magnitude

original image high-pass filter

?



More filtering examples

frequency magnitude

original image high-pass filter



More filtering examples

frequency magnitude

original image band-pass filter



More filtering examples

frequency magnitude

original image band-pass filter



More filtering examples

frequency magnitude

original image band-pass filter



More filtering examples

frequency magnitude

original image band-pass filter



Revisiting sampling



The Nyquist-Shannon sampling theorem

A continuous signal can be perfectly reconstructed from its discrete version using linear 
interpolation, if sampling occurred with frequency:

Equivalent reformulation: When downsampling, aliasing does not occur if samples are 
taken at the Nyquist frequency or higher.

This is called the 
Nyquist frequency



How does the Nyquist-Shannon theorem 
relate to the Gaussian pyramid?

Gaussian pyramid



How does the Nyquist-Shannon theorem 
relate to the Gaussian pyramid?

Gaussian pyramid

• Gaussian blurring is low-pass filtering.
• By blurring we try to sufficiently decrease 

the Nyquist frequency to avoid aliasing.

How large should the Gauss blur we use be?



“Hybrid image”

Aude Oliva and Philippe Schyns

Frequency-domain filtering in human vision



Frequency-domain filtering in human vision



Variable frequency sensitivity
Experiment: Where do you see the stripes?

frequency

co
nt

ra
st



Campbell-Robson contrast sensitivity curve

frequency

co
nt

ra
st

Our eyes are sensitive to mid-range frequencies

Variable frequency sensitivity

• Early processing in humans 
filters for various orientations 
and scales of frequency
• Perceptual cues in the mid 

frequencies dominate 
perception


