Image pyramids and frequency domain
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Overview of today’s lecture

Image downsampling.
Aliasing.

Gaussian image pyramid.
Laplacian image pyramid.
Fourier series.

Frequency domain.

Fourier transform.
Frequency-domain filtering.

Revisiting sampling.



Slide credits
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Image downsampling
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Naive image downsampling

Throw away half the rows and columns

delete even rows "
delete even columns §&Fa e

delete even rows
delete even columns

What is the problem with this approach?



Naive image downsampling

- =

1/4 (2x zoom) 1/8 (4x zoom)

Why is the 1/8 image so pixelated (and do you know what this effect is called)?



Aliasing



Reminder

Illumination (energy)

Af/'/ l\‘ source

\

Imaging system

(Internal) image plane

Scene element

Images are a discrete, or sampled, representation of a continuous world




Sampling

Very simple example: a sine wave
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How would you discretize this signal?




Sampling




Sampling

Very simple example: a sine wave

How many samples should | take?
Can | take as many samples as | want?



Sampling

Very simple example: a sine wave

How many samples should | take?
Can | take as few samples as | want?



Undersampling

Very simple example: a sine wave

AWAWAWAWA
/\\/ \/% (VARVIRV.

Unsurprising effect: information is lost.




Undersampling

Very simple example: a sine wave

ANAN
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Unsurprising effect: information is lost.
Surprising effect: can confuse the signal with one of lower frequency.



Undersampling

Very simple example: a sine wave

Unsurprising effect: information is lost.
Surprising effect: can confuse the signal with one of lower frequency.
Note: we could always confuse the signal with one of higher frequency.




Aliasing

Fancy term for: Undersampling can disguise a signal as one of a lower frequency
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Unsurprising effect: information is lost.
Surprising effect: can confuse the signal with one of lower frequency.
Note: we could always confuse the signal with one of higher frequency.




Aliasing in textures
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Aliasing in photographs

This is also known as “moire”




Temporal aliasing

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDDRPOB

frame 0O frame 1 frame 2 frame 3 frame 4
1 I ] L,
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)












Anti-aliasing

How would you deal with aliasing?



Anti-aliasing

How would you deal with aliasing?

Approach 1: Oversample the signal



Anti-aliasing

How would you deal with aliasing?

Approach 1: Oversample the signal

Approach 2: Smooth the signal
 Remove some of the detail effects that cause aliasing.
* Lose information, but better than aliasing artifacts.

How would you smooth a signal?



Better image downsampling

Apply a smoothing filter first, then throw away half the
rows and columns

Gaussian filter
delete even rows
delete even columns

Gaussian filter
delete even rows
delete even columns




Better image downsampling

1/8 (4x zoom)



Naive image downsampling

1/8 (4x zoom)



Anti-aliasing

Question 1: How much smoothing is needed to avoid aliasing?

Question 2: How many samples are needed to avoid aliasing?

Answer to both: Enough to reach the Nyquist limit. (We’ll see
what this means soon.)



Gaussian image pyramid



Gaussian image pyramid

The name of this sequence of subsampled images



Constructing a Gaussian pyramid

Algorithm
o ? ) sample
repeat:
filter
filter
| o o 2 o e | sample
subsample
filter
until min resolution reached

o ole o o o ole o sample

Question: How much bigger than the original image is the whole pyramid?



Constructing a Gaussian pyramid

Algorithm
o ? ) sample
repeat:
filter
filter
| o o 2 o e | sample
subsample
filter
until min resolution reached

o ole o o o ole o sample

Question: How much bigger than the original image is the whole pyramid?

Answer: Just 4/3 times the size of the original image! (How did | come up with this number?)



Some properties of the Gaussian pyramid
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Some properties of the Gaussian pyramid

EEcEe

312 256 128

What happens to the details of the image?
* They get smoothed out as we move to
higher levels.

' What is preserved at the higher levels?
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Some properties of the Gaussian pyramid
What happens to the details of the image?
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! . They get smoothed out as we move to

512 8 higher levels.
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What is preserved at the higher levels?
* Mostly large uniform regions in the
original image.

How would you reconstruct the original
image from the image at the upper level?
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Some properties of the Gaussian pyramid
:g What happens to the details of the image?

S S S ES =
@@ﬁ ﬁ ‘—-’ _ _* They get smoothed out as we move to
256 128 64

512 32 16 8 higher levels.

What is preserved at the higher levels?
* Mostly large uniform regions in the
original image.

How would you reconstruct the original
image from the image at the upper level?
* That’s not possible.




Blurring is lossy

level O level 1 (before downsampling)

What does the residual look like?



Blurring is lossy

level O level 1 (before downsampling) residual

Can we make a pyramid that is lossless?



Laplacian image pyramid



Laplacian image pyramid

At each level, retain the residuals instead of
the blurred images themselves.

512 256 128 64 32 16 8

Can we reconstruct the original image using
the pyramid?




Laplacian image pyramid

v At each level, retain the residuals instead of
% the blurred images themselves.

512 256 128 64 32 16 8

Can we reconstruct the original image using
the pyramid?
* Yes we can!

What do we need to store to be able to
reconstruct the original image?




Let’s start by looking at just one level

level O level 1 (upsampled) residual

Does this mean we need to store both residuals and the blurred copies of the original?



Constructing a Laplacian pyramid

%
SUBSAMP >ﬂ

Algorithm

repeat:

filter
compute residual
subsample

until min resolution reached




Constructing a Laplacian pyramid

What is this part?

Algorithm

repeat:

filter
compute residual
subsample

until min resolution reached




Constructing a Laplacian pyramid

It’s a Gaussian
pyramid.

Algorithm

repeat:

filter
compute residual
subsample

until min resolution reached




Reconstructing the original image

B UPSAMP
& BLUR

Algorithm

repeat:

upsample

sum with residual

until orig resolution reached




ian vs Laplacian Pyramid
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Why is it called a Laplacian pyramid?



Reminder: Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Sigma = 50
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“zero crossings” at edges



Why is it called a Laplacian pyramid?

Difference of Gaussia ne
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unit Gaussian Laplacian

Difference of Gaussians approximates the Laplacian







Still used extensively

input image

foreground details enhanced, background details reduced user-provided mask



Other types of pyramids

Steerable pyramid: At each level keep multiple
versions, one for each direction.

Wavelets: Huge area in image processing
(see 18-793).



What are image pyramids used for?

image compression multi-scale texture mapping image blending




Fourier series



Basic building block

Asin(wz + ¢)

Fourier’s claim: Add enough of these to get any periodic signal you want!



Basic building block

Asin(wz —|—
/

amplitude T phase
sinusoid variable

angular
frequency

Fourier’s claim: Add enough of these to get any periodic signal you want!



Examples

How would you generate this function?




Examples

How would you generate this function?

sin(27x)



Examples

How would you generate this function?

f(z) = sin(2rz) + %Sin(27r3a:)

sin(27x)

1
3 sin(273z)




Examples

How would you generate this function?

|l
-

square wave



Examples

How would you generate this function?

square wave

N




Examples

How would you generate this function?

square wave

N




Examples

How would you generate this function?

square wave

N




Examples

How would you generate this function?
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Examples

How would you generate this function?

| || f\/ -.‘_"'l
| | |
o~ | | + o /
|
| I
[ o |
v \/ \ “,‘| .I‘ \
square wave
|' "‘,.l' "‘," »“.,“
I| \l || |
. | | How would you express
— | || | | this mathematically?
|
|..’-- W |..'.\ J




Examples

oo

A Z % sin(2mwkx)

k=1

sguare wave infinite sum of sine waves

How would could you visualize this in the frequency domain?



Examples

oo

1
A —sin(2mkx
k§=1: k ( )

sguare wave infinite sum of sine waves

magnitude

H““llll“ frequency




Frequency domain



Visualizing the frequency spectrum

amplitude |

1.00
0.66

0.33

0 k 2 3k 4k frequency



Visualizing the frequency spectrum

Recall the temporal domain visualization

amplitude |

HO - UER LA
0.66
0.33

0 k 2k 3k 4k  frequency



Visualizing the frequency spectrum

Recall the temporal domain visualization

amplitude |

1.00 A = AR
0.66 How do we plot ...

sin(2mkx
0.33 ( )

0 k 2k 3k 4k  frequency



Visualizing the frequency spectrum

Recall the temporal domain visualization

amplitude |

0.66
0.33

0 k 2k 3k 4k  frequency



Visualizing the frequency spectrum

Recall the temporal domain visualization

amplitude |

1.00 - TERY O
0.66 1

gsin(27r3ka:)
0.33

0 k 2k 3k 4k  frequency



Visualizing the frequency spectrum

not visualizing the
symmetric negative part

amplitude |

1.00
0.66

0.33

Recall the temporal domain visualization

»

0 & 2k 3k

?

What is at zero
frequency?

»

4k  frequency

Need to understand this to
understand the 2D version!



Visualizing the frequency spectrum

not visualizing the
symmetric negative part

amplitude |

1.00
0.66

0.33

Recall the temporal domain visualization

»

0 &k

?

signal average (zero
for a sine wave with
no offset)

2k

3k

»

4k  frequency

Need to understand this to
understand the 2D version!



Examples

Spatial domain visualization

1D

2D

Frequency domain visualization

[F(k)|

v
o



Examples

Spatial domain visualization Frequency domain visualization

[F(k)|

1D

> k

What do the three dots
k
) I I | . o
ks



Examples

Spatial domain visualization Frequency domain visualization

I I ky.
Kz




Examples

Spatial domain visualization Frequency domain visualization

I I ky .
Kz




Examples

How would you generate this image with sine waves?

r




Examples

How would you generate this image with sine waves?

Has both an x and
y components













Basic building block

Asin(wz —|—
7 T
amplitude phase
sinusoid variable What about non-

angular S
frequency / per|od|c S|gna|s?

Fourier’s claim: Add enough of these to get any periodic signal you want!



Fourier transform



Recalling some basics

Complex numbers have two parts:

( )

coordinates what’s this?  what's this?

. J




Complex numbers have two parts:

rectangular
coordinates

Recalling some basics

Vs

,
) :
2
3
ﬁ

real imaginary




Recalling some basics

Complex numbers have two parts:

rectangular
coordinates

Vs

\

R+ 41

real imaginary

S

Alternative reparameterization:

polar
coordinates

r(cos 8 + j sin 0)

how do we compute these?

polar transform




Recalling some basics

Complex numbers have two parts:

rectangular
coordinates

Vs

\

R+ 41

real imaginary

S

Alternative reparameterization:

polar
coordinates

r(cos 8 + j sin 0)
polar transform

I
=tan" (=) r=+vVR2+1I2

R

polar transform




Recalling some basics

Complex numbers have two parts:

( )

coordinates h + J I et >
real imaginary o _

. J

Alternative reparameterization:
polar transform

polar r(cos 8 + j sin 0) How do you write

coordinates . .
oolar transform these in exponential

3
9:tan_1(%) r=+/R2+ I? forms




Recalling some basics

Complex numbers have two parts:

rectangular
coordinates

Vs

\

R+ 41

real imaginary

Alternative reparameterization:

polar
coordinates

r(cos 8 + j sin 0)
polar transform

I
=tan" (=) r=+vVR2+1I2

R

or
equivalently

rel?

how did we get this?

exponential
form



Recalling some basics

Complex numbers have two parts:

( )

coordinates It + J I s >
real imaginary o _

. J

Alternative reparameterization:

Co I, i
polar. T’(COSQ + jsin 9) rel exponential
coordinates or form

pola;transform equivalently | Euler’s formula
9=tan_1(ﬁ) r=+1R2+I2 e? = cosf + jsinf

This will help us understand the Fourier transform equations



continuous

discrete

Fourier transform

Fourier transform inverse Fourier transform

..................................................................................................................................................................................................

1 N—1 . 1 N-—1
F(k) — N Z f(a;)e—JZka/N f(:U) _ N F(k)eﬂvrka:/N
=0 k=0

Where is the connection to the "summation of sine waves" idea?



Fourier transform

Where is the connection to the "summation of sine waves" idea?

1 N—1
flo) =< D Fk)emte/N
k=0

Euler’s formula

e’? = cos(6) + j sin(6)

sum over frequencies

\

f(z) = Jif]:z;/F'(k){COS (27;\/;:17) - j sin (27;\/::1:) }

scaling parameter wave components




Fourier transform pairs

spatial domain frequency domain

$box(x) sinc(s)

Y
>
w

Note the symmetry:
duality property of
Fourier transform
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. gauss(x; o) » gauss(s; 1/o)
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Computing the discrete Fourier transform (DFT)



Computing the discrete Fourier transform (DFT)

N-—-1
F(k) = % Y flz)e 72™k=/N s just a matrix multiplication:
z=0
F(0) wo  w° W WO WO £(0)
F(1) we  wl o w2 w3 WN-1 £(1)
F(2) wo W2 w4 W WhN-2 f(2) _
F3) |=|w° w* Wt W W -3 £(3) W = e J27/N
F(N -1) wo wh-1 wh=2 N3 Wt f(N —-1)

In practice this is implemented using the fast Fourier transform (FFT) algorithm.



Fourier transforms of natural images

originalh amplitude



Fourier transforms of natural images

Image phase matters!

cheetah phase with zebra amplitude zebra phase with cheetah amplitude



Frequency-domain filtering



The convolution theorem

The Fourier transform of the convolution of two functions is the product of their Fourier
transforms:

Flg x h} = FlgrFih}

The inverse Fourier transform of the product of two Fourier transforms is the convolution
of the two inverse Fourier transforms:

FH{gh} =F g}« F{h}

Convolution in spatial domain is equivalent to multiplication in frequency domain!



What do we use convolution for?



Convolution for 1D continuous sighals

Definition of linear shift-invariant filtering as convolution:

Fro)@) = [ f@)glx - y)dy
- o0 RS

filtered signal filter input signal

Using the convolution theorem, we can interpret and implement all types of linear
shift-invariant filtering as multiplication in frequency domain.

Why implement convolution in frequency domain?



Spatial domain filtering

sk =
filter kernel ‘

Frequency domain filtering



Revisiting blurring

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian
filter




Gaussian blur




Box blur




More filtering examples

filters shown
in frequency-
domain




More filtering examples

low-pass

filters shown
band-pass in frequency-
domain




More filtering examples

high-pass




More filtering examples

high-pass
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More filtering examples

original image low-pass filter

frequency magnitude




More filtering examples

original image low-pass filter

frequency magnitude




More filtering examples

original image high-pass filter

frequency magnitude




More filtering examples

original image high-pass filter

frequency magnitude




More filtering examples

original image band-pass filter

frequency magnitude




More filtering examples

original image band-pass filter

frequency magnitude




More filtering examples

original image band-pass filter

-

frequency magnitude




More filtering examples

original image band-pass filter

frequency magnitude




Revisiting sampling



The Nyquist-Shannon sampling theorem

A continuous signal can be perfectly reconstructed from its discrete version using linear
interpolation, if sampling occurred with frequency:

ﬁ 2 2f This is called the

max Nyquist frequency

Equivalent reformulation: When downsampling, aliasing does not occur if samples are
taken at the Nyquist frequency or higher.



Gaussian pyramid
EEEEEE

How does the Nyquist-Shannon theorem

« : I % relate to the Gaussian pyramid?
512 256 128 64 32 16 8

4%ﬁ §%4




Gaussian pyramid
]ﬁ

How does the Nyquist-Shannon theorem

relate to the Gaussian pyramid?

e Gaussian blurring is low-pass filtering.

e By blurring we try to sufficiently decrease
the Nyquist frequency to avoid aliasing.

312

How large should the Gauss blur we use be?
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Frequency-domain filtering in human vision

“Hybrid image”

vvvvvvvvvvv

Aude Oliva and Philippe Schyns



Frequency-domain filtering in human vision

-




Variable frequency sensitivity

Experiment: Where do you see the stripes?
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contrast

Variable frequency sensitivity

Campbell-Robson contrast sensitivity curve

Our eyes are sensitive to mid-range frequencies

B L

frequency

* Early processing in humans
filters for various orientations
and scales of frequency

* Perceptual cues in the mid
frequencies dominate
perception



