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Textbook for geometry part of class

• Amazing resource for everything related to 
geometric methods in computer vision.

• Great introduction to projective geometry as 
well.



Overview of today’s lecture

• Motivation: panoramas.

• Back to warping: image homographies.

• Computing with homographies.

• The direct linear transform (DLT).

• Random Sample Consensus (RANSAC).



Slide credits

Most of these slides were adapted from:

• Kris Kitani (15-463, Fall 2016).
• Noah Snavely (Cornell).



Motivation for image alignment: panoramas.



How do you create a panorama?

 

Panorama: an image of (near) 360o field of view.



How do you create a panorama?

1. Use a very wide-angle lens.
 

Panorama: an image of (near) 360o field of view.



Wide-angle lenses

What are the pros and cons of this?

Fish-eye lens: can produce (near) 
hemispherical field of view.



How do you create a panorama?

1. Use a very wide-angle lens.
•  Pros: Everything is done optically, single capture.
•  Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

Any alternative to this?

Panorama: an image of (near) 360o field of view.



How do you create a panorama?

1. Use a very wide-angle lens.
•  Pros: Everything is done optically, single capture.
•  Cons: Lens is super expensive and bulky, lots of distortion (can be dealt-with in post).

2. Capture multiple images and combine them.

Panorama: an image of (near) 360o field of view.



Panoramas from image stitching

1. Capture multiple images 
from different viewpoints.

2. Stitch them together into 
a virtual wide-angle 
image.



How do we stitch images from different viewpoints?

Will standard stitching work?
1. Translate one image relative to another.
2. (Optionally) find an optimal seam.



How do we stitch images from different viewpoints?

Will standard stitching work?
1. Translate one image relative to another.
2. (Optionally) find an optimal seam.

Translation-only stitching is not enough to mosaic these images. 

left on top right on top



How do we stitch images from different viewpoints?

What else can we try?



How do we stitch images from different viewpoints?

Use image homographies.



Back to warping: image homographies



Classification of 2D transformations



Classification of 2D transformations

PP1

PP3

PP2
Which kind of transformation is needed to warp 
projective plane 1 into projective plane 2?



Classification of 2D transformations

PP1

PP3

PP2

• A projective transformation (a.k.a. a homography).

Which kind of transformation is needed to warp 
projective plane 1 into projective plane 2?



Warping with different transformations
translation affine projective (homography)



View warping
original view synthetic top view synthetic side view

What are these black areas near the 
boundaries?



Virtual camera rotations

original view

synthetic 
rotations



Image rectification

two 
original 
images

rectified and stitched



Street art



Carpet illusion



Understanding geometric patterns
What is the pattern on the floor?

magnified view of floor



Understanding geometric patterns
What is the pattern on the floor?

magnified view of floor

Homogra
phy

rectified view

reconstruction from 
rectified view



Understanding geometric patterns
Very popular in renaissance drawings (when perspective was discovered)

rectified view 
of floor

reconstruction



A weird painting
Holbein, “The Ambassadors”



A weird painting
Holbein, “The Ambassadors”

What’s this???



A weird painting
Holbein, “The Ambassadors”

rectified view

skull under anamorphic perspective



A weird painting
Holbein, “The Ambassadors”

DIY: use a polished spoon to see the 
skull



Panoramas from image stitching

1. Capture multiple images 
from different viewpoints.

2. Stitch them together into 
a virtual wide-angle 
image.



When can we use homographies?



1. … the scene is planar; or

We can use homographies when…

2. … the scene is very far or has 
small (relative) depth variation 
→ scene is approximately 
planar



3. … the scene is captured under camera rotation only (no translation or pose change)

We can use homographies when…

More on why this is the case in a later lecture.



Computing with homographies



Classification of 2D transformations

PP1

PP3

PP2
Which kind of transformation is needed to warp 
projective plane 1 into projective plane 2?

• A projective transformation (a.k.a. a homography).



Applying a homography

𝑝 =
𝑥
𝑦 	 ⇒ 	 𝑃 =

𝑥
𝑦
1

1. Convert to homogeneous coordinates:

2. Multiply by the homography matrix: 𝑃! = 𝐻 ⋅ 𝑃

3. Convert back to heterogeneous coordinates: 𝑃! =
𝑥!
𝑦!
𝑤!

	 ⇒	 𝑝! =
,𝑥
!
𝑤!

,𝑦
!

𝑤!

What is the size of the homography matrix?



Applying a homography
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2. Multiply by the homography matrix: 𝑃! = 𝐻 ⋅ 𝑃
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Answer: 3 x 3What is the size of the homography matrix?

How many degrees of freedom does the homography matrix have?



Applying a homography

𝑝 =
𝑥
𝑦 	 ⇒ 	 𝑃 =

𝑥
𝑦
1

1. Convert to homogeneous coordinates:

2. Multiply by the homography matrix: 𝑃! = 𝐻 ⋅ 𝑃

3. Convert back to heterogeneous coordinates: 𝑃! =
𝑥!
𝑦!
𝑤!

	 ⇒	 𝑝! =
,𝑥
!
𝑤!

,𝑦
!

𝑤!

Answer: 3 x 3

Answer: 8How many degrees of freedom does the homography matrix have?

What is the size of the homography matrix?



The direct linear transform (DLT)



Create point correspondences

target imageoriginal image

𝑝!" 𝑝#"

𝑝$"𝑝%"

𝑝!
𝑝#

𝑝$𝑝%

How many correspondences do we need?

Given a set of matched feature points find the best estimate of 𝐻𝑝&, 𝑝&" such that

𝑃! = 𝐻 ⋅ 𝑃



Determining the homography matrix
Write out linear equation for each correspondence:

𝑃! = 𝐻 ⋅ 𝑃 or



Determining the homography matrix

Expand matrix multiplication:

Write out linear equation for each correspondence:

𝑃! = 𝐻 ⋅ 𝑃 or



Determining the homography matrix

Expand matrix multiplication:

Divide out unknown scale factor:

Write out linear equation for each correspondence:

𝑃! = 𝐻 ⋅ 𝑃 or

How do you 
rearrange terms 

to make it a 
linear system?



Just rearrange the terms



Determining the homography matrix

Re-write in matrix form:

Re-arrange terms:

How many equations 
from one point 

correspondence?



Determining the homography matrix
Stack together constraints from multiple point correspondences:

Homogeneous linear least squares problem 



Reminder: Determining affine transformations
Affine transformation:

Vectorize transformation 
parameters:

Notation in system form:

Stack equations from point 
correspondences:



Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Python:

x = numpy.linalg.
solve(A, b)

Note: You almost never want to 
compute the inverse of a matrix.

Reminder: Determining affine transformations



Determining the homography matrix
Stack together constraints from multiple point correspondences:

Homogeneous linear least squares problem 
• How do we solve this?



Determining the homography matrix
Stack together constraints from multiple point correspondences:

Homogeneous linear least squares problem 
• Solve with SVD



Singular value decomposition

A = U⌃VT
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General form of total least squares

(matrix form)

(Warning: change of notation. x is a vector of parameters!)

constraint

minimize

subject to

minimize

Solution is the eigenvector 
corresponding to smallest 
eigenvalue of

(Rayleigh quotient)

Solution is the column of V 
corresponding to smallest singular 
value(equivalent)



Solving for H using DLT
Given solve for H such that

1. For each correspondence, create 2x9 matrix

2. Concatenate into single 2n x 9 matrix

3. Compute SVD of 

4. Store singular vector of the smallest singular value

5. Reshape to get



Linear least squares estimation only works when the transform function is linear! (duh)

Also doesn’t deal well with outliers.



Create point correspondences

target imageoriginal image

𝑝!" 𝑝#"

𝑝$"𝑝%"

𝑝!
𝑝#

𝑝$𝑝%

How do we automate this step?



The image correspondence pipeline

1. Feature point detection
• Detect corners using the Harris corner detector.

2. Feature point description
• Describe features using the Multi-scale oriented patch descriptor. 

3. Feature matching



The image correspondence pipeline

1. Feature point detection
• Detect corners using the Harris corner detector.

2. Feature point description
• Describe features using the Multi-scale oriented patch descriptor. 

3. Feature matching



good correspondence

bad correspondence



Random Sample Consensus (RANSAC)



Algorithm:
1.  Sample (randomly) the number of points required to fit the model
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines 
(with outliers)
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Algorithm:
1.  Sample (randomly) the number of points required to fit the model
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model
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Algorithm:
1.  Sample (randomly) the number of points required to fit the model
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the 

model

Repeat 1-3 until the best model is found with high confidence

Fitting lines 
(with outliers)



Algorithm:
1.  Sample (randomly) the number of points required to fit the model
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fitting lines 
(with outliers)



How to choose parameters?
• Number of samples N
– Choose N so that, with probability p, at least one random sample is free from 

outliers (e.g. p=0.99) (outlier ratio: e )

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold δ
–Choose δ  so that a good point with noise is likely (e.g., prob=0.95) within threshold

Number of samples N required



Given two images…

find matching features (e.g., SIFT) and a translation transform



Matched points will usually contain bad correspondences

good correspondence

bad correspondence

how should we estimate the transform?



LLS will find the "average" transform

‘average’ 
transform

solution is corrupted by bad correspondences



Use RANSAC

How many correspondences to compute translation transform?



Need only one correspondence, to find translation model



Pick one correspondence, count inliers

1 correspondence



Pick one correspondence, count inliers

2 inliers



Pick one correspondence, count inliers

1 correspondence



Pick one correspondence, count inliers

5 inliers



Pick one correspondence, count inliers

5 inliers

Pick the model with the highest number of inliers!



Estimating homography using RANSAC

• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H (DLT)

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers



• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers

Estimating homography using RANSAC



• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep if largest number of inliers

• Recompute H using all inliers

Estimating homography using RANSAC



• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep H if largest number of inliers

• Recompute H using all inliers

Estimating homography using RANSAC



• RANSAC loop

1. Get four point correspondences (randomly)

2. Compute H using DLT

3. Count inliers

4. Keep H if largest number of inliers

• Recompute H using all inliers

Estimating homography using RANSAC



Useful for…





The image correspondence pipeline

1. Feature point detection
• Detect corners using the Harris corner detector.

2. Feature point description
• Describe features using the Multi-scale oriented patch descriptor. 

3. Feature matching and homography estimation
• Do both simultaneously using RANSAC.


