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• Quick intro to vision for video.

• Optical flow.

• Constant flow.

• Horn-Schunck flow.

Overview of today’s lecture



Slide credits

Most of these slides were adapted from:

• Kris Kitani (16-385, Spring 2017).



Computer vision for video



Optical flow used for feature tracking on a drone



optical flow used for motion estimation in visual odometry



Optical flow



Optical Flow
Problem Definition

Assumptions

Brightness constancy

Small motion

Given two consecutive image frames, 
estimate the motion of each pixel



Optical Flow
(Problem definition)

Estimate the motion 
(flow) between these 

two consecutive images

How is this different from estimating a 2D transform?



Key Assumptions
(unique to optical flow)

Color Constancy
(Brightness constancy for intensity images)

Small Motion
(pixels only move a little bit)

Implication: allows for pixel to pixel comparison 
(not image features)

Implication: linearization of the brightness 
constancy constraint



Approach

Look for nearby pixels with the same color
(small motion) (color constancy)



Brightness constancy
Scene point moving through image sequence

Assumption 1



Brightness constancy
Scene point moving through image sequence

Assumption 1



Brightness constancy

Assumption:Brightness of the point will remain the same

Scene point moving through image sequence

Assumption 1



Brightness constancy

Assumption:Brightness of the point will remain the same

constant

Scene point moving through image sequence

Assumption 1



Small motion
Assumption 2



Small motion
Assumption 2



Small motion

Optical flow (velocities): Displacement:

Assumption 2



Small motion

Optical flow (velocities): Displacement:

… the brightness between two consecutive image 
frames is the same

For a really small space-time step…

Assumption 2



total derivative partial derivative

Equation is not obvious. Where does this come from?

These assumptions yield the …

Brightness Constancy Equation



For small space-time step, brightness of a point is the same



For small space-time step, brightness of a point is the same

Insight:
If the time step is really small, 

we can linearize the intensity function



Multivariable Taylor Series Expansion
(First order approximation, two variables)



Multivariable Taylor Series Expansion
(First order approximation, two variables)

assuming small 
motion



assuming small 
motion

Multivariable Taylor Series Expansion
(First order approximation, two variables)

fixed point

partial derivative



assuming small 
motion

cancel terms

Multivariable Taylor Series Expansion
(First order approximation, two variables)



assuming small 
motion

divide by 

take limit 

Multivariable Taylor Series Expansion
(First order approximation, two variables)



assuming small 
motion

divide by 

take limit 

Multivariable Taylor Series Expansion
(First order approximation, two variables)



assuming small 
motion

divide by 

take limit 

Brightness Constancy 
Equation

Multivariable Taylor Series Expansion
(First order approximation, two variables)



shorthand notation

vector form

Brightness 
Constancy Equation

(x-flow) (y-flow)

(1 x 2) (2 x 1)



(putting the math aside for a second…)

What do the terms of the 
brightness constancy equation represent?



(putting the math aside for a second…)

What do the terms of the 
brightness constancy equation represent?

Image gradients
(at a point p)



(putting the math aside for a second…)

What do the terms of the 
brightness constancy equation represent?

flow velocities

Image gradients
(at a point p)



(putting the math aside for a second…)

What do the terms of the 
brightness constancy equation represent?

flow velocities

temporal gradient

How do you compute these terms?

Image gradients
(at a point p)



spatial derivative

How do you compute …



spatial derivative

Forward difference
Sobel filter

Derivative-of-Gaussian filter
…

How do you compute …



spatial derivative temporal derivative

Forward difference
Sobel filter

Derivative-of-Gaussian filter
…

How do you compute …



spatial derivative temporal derivative

Forward difference
Sobel filter

Derivative-of-Gaussian filter
…

How do you compute …

frame differencing



Frame differencing
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(example of a forward difference)
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Example:
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spatial derivative optical flow

Forward difference
Sobel filter

Derivative-of-Gaussian filter
…

How do you compute …

temporal derivative

frame differencingHow do you compute this?



spatial derivative optical flow

Forward difference
Sobel filter

Derivative-of-Gaussian filter
…

How do you compute …

temporal derivative

frame differencingWe need to solve for this!
(this is the unknown in the 

optical flow problem)



spatial derivative optical flow

Forward difference
Sobel filter

Derivative-of-Gaussian filter
…

Solution lies on a line

Cannot be found uniquely 
with a single constraint 

How do you compute …

temporal derivative

frame differencing



Solution lies on a straight line

The solution cannot be determined uniquely with 
a single constraint (a single pixel)

many combinations of u and v will satisfy the equality



known

unknown

We need at least ____ equations to solve for 2 unknowns.



known

unknown

Where do we get more equations (constraints)?



Constant flow



Where do we get more equations (constraints)?

Assume that the surrounding patch (say 5x5) has 
‘constant flow’



Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

Assumptions:



Flow is locally smooth

Neighboring pixels have same displacement

Using a 5 x 5 image patch, gives us 25 equations

Assumptions:



Equivalent to solving:

where the summation is over each pixel p in patch P



where the summation is over each pixel p in patch P

Sometimes called ‘Lucas-Kanade Optical Flow’
(can be interpreted to be a special case of the LK method with a translational warp model)

Equivalent to solving:



When is this solvable?



When is this solvable?

ATA should be invertible

ATA should not be too small

ATA should be well conditioned

l1 and l2 should not be too small 

l1/l2 should not be too large (l1=larger eigenvalue)



Where have you seen this before?

=



Where have you seen this before?

Harris Corner Detector!

=



Where have you seen this before?

Harris Corner Detector!

=

What are the implications?



Implications
• Corners are when λ1, λ2 are big; this is also when 

Lucas-Kanade optical flow works best

• Corners are regions with two different directions of 
gradient (at least)

• Corners are good places to compute flow! 

What happens when you have no ‘corners’?



You want to compute optical flow.
What happens if the image patch contains only a line?



Barber’s pole illusion



Barber’s pole illusion



Barber’s pole illusion



Aperture Problem

In which direction is the line moving?

small visible 
image patch



Aperture Problem

In which direction is the line moving?

small visible 
image patch



Aperture Problem



Aperture Problem



Aperture Problem



Aperture Problem



Want patches with different gradients to 
the avoid aperture problem



Want patches with different gradients to 
the avoid aperture problem



1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5

- - - -
- 1 1 1
- 2 2 2
- 3 3 3
- 4 4 4

y

x

y

x

optical flow: (1,1)

H(x,y) = y I(x,y)

We recover the v of the optical flow but not the u. 
This is the aperture problem.

Compute gradients Solution:



Horn-Schunck optical 
flow



Horn-Schunck 
Optical Flow (1981)

Lucas-Kanade
Optical Flow (1981)

‘constant’ flow
(flow is constant for all pixels)

‘smooth’ flow
(flow can vary from pixel to pixel)

global method
(dense)

local method
(sparse)



Smoothness

most objects in the world are rigid or 
deform elastically 

moving together coherently

we expect optical flow fields to be smooth



Key idea
(of Horn-Schunck optical flow)

Enforce
brightness constancy

Enforce 
smooth flow field

to compute optical flow



Key idea
(of Horn-Schunck optical flow)

Enforce
brightness constancy

Enforce 
smooth flow field

to compute optical flow



Enforce 
brightness constancy

For every pixel,



For every pixel,

lazy notation for 

Enforce 
brightness constancy



Key idea
(of Horn-Schunck optical flow)

Enforce
brightness constancy

Enforce 
smooth flow field

to compute optical flow



Enforce smooth flow field

u-component of flow



Which flow field optimizes the objective?

?



smallbig

Which flow field optimizes the objective?



Key idea
(of Horn-Schunck optical flow)

Enforce
brightness constancy

Enforce 
smooth flow field

to compute optical flow

bringing it all together…



Horn-Schunck optical flow

smoothness brightness constancy

weight



HS optical flow objective function

Brightness constancy

Smoothness



How do we solve this 
minimization problem?



Compute partial derivative, derive update equations
(gradient decent!)

How do we solve this 
minimization problem?



Compute the partial derivatives of this huge sum!

smoothness term brightness constancy



Compute the partial derivatives of this huge sum!

it’s not so bad…

how many u terms depend on k and l?



Compute the partial derivatives of this huge sum!

it’s not so bad…

how many u terms depend on k and l?
ONE from brightness constancyFOUR from smoothness



Compute the partial derivatives of this huge sum!

it’s not so bad…

how many u terms depend on k and l?
ONE from brightness constancyFOUR from smoothness



Compute the partial derivatives of this huge sum!

(variable will appear four times in sum)



Compute the partial derivatives of this huge sum!

short hand for 
local average

(variable will appear four times in sum)



Where are the extrema of E?



Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)



Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

how do you solve this?this is a linear system



Recall



Recall

(det A)

Same as the linear system:

(det A)



Rearrange to get update equations:

new 
value

old
average



new 
value

old
average

When lambda is small (lambda inverse is big)…

Recall:



new 
value

old
average

When lambda is small (lambda inverse is big)…
goes to 

zero

goes to 
zero

Recall:



new 
value

old
average

When lambda is small (lambda inverse is big)…
goes to 

zero

goes to 
zero

…we only care about smoothness.

Recall:



ok, take a step back, why did we do all this math?



We are solving for the optical flow (u,v) given 
two constraints

smoothness brightness constancy

We needed the math to minimize this 
(now to the algorithm)



Horn-Schunck 
Optical Flow Algorithm

1. Precompute image gradients

2. Precompute temporal gradients

3. Initialize flow field

4. While not converged

  Compute flow field updates for each pixel:

Just 8 lines of code!


