Optical flow

16-385 Computer Vision Fall 2023, Lecture 18

Overview of today's lecture

- Quick intro to vision for video.
- Optical flow.
- Constant flow.
- Horn-Schunck flow.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).

Computer vision for video

Optical flow used for feature tracking on a drone

optical flow used for motion estimation in visual odometry

camera image

It was captured in a motion capture system, which is reason for the flickering lights.

Optical flow

Optical Flow

Problem Definition

Given two consecutive image frames, estimate the motion of each pixel

Assumptions

Brightness constancy

Small motion

Optical Flow
 (Problem definition)

$I(x, y, t)$

$$
I\left(x, y, t^{\prime}\right)
$$

Estimate the motion
(flow) between these two consecutive images

How is this different from estimating a 2D transform?

Key Assumptions
 (unique to optical flow)

Color Constancy

(Brightness constancy for intensity images)
Implication: allows for pixel to pixel comparison (not image features)

Small Motion
 (pixels only move a little bit)

Implication: linearization of the brightness constancy constraint

Approach

$I(x, y, t)$

$I\left(x, y, t^{\prime}\right)$

Look for nearby pixels with the same color

(small motion)

(color constancy)

Assumption 1

Brightness constancy

Scene point moving through image sequence

Assumption 1

Brightness constancy

Scene point moving through image sequence

Assumption 1

Brightness constancy

Scene point moving through image sequence

Assumption:Brightness of the point will remain the same

Assumption 1

Brightness constancy

Scene point moving through image sequence

Assumption:Brightness of the point will remain the same

$$
I(x(t), y(t), t)=\underset{\text { constant }}{C}
$$

Assumption 2

Small motion

$I(x, y, t)$
$I(x, y, t+\delta t)$

Assumption 2

Small motion

Assumption 2

Small motion

Optical flow (velocities): $(u, v) \quad$ Displacement: $(\delta x, \delta y)=(u \delta t, v \delta t)$

Assumption 2

Small motion

Optical flow (velocities): $(u, v) \quad$ Displacement: $(\delta x, \delta y)=(u \delta t, v \delta t)$
For a really small space-time step...
$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$
... the brightness between two consecutive image frames is the same

These assumptions yield the ...

Brightness Constancy Equation

$$
\frac{d I}{d t}=\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0
$$

Equation is not obvious. Where does this come from?

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

For small space-time step, brightness of a point is the same

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

For small space-time step, brightness of a point is the same

Insight:

If the time step is really small, we can linearize the intensity function
$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

Multivariable Taylor Series Expansion

(First order approximation, two variables)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)
$$

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

Multivariable Taylor Series Expansion

(First order approximation, two variables)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)
$$

$$
I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t=I(x, y, t) \underset{\substack{\text { assuming small } \\ \text { motion }}}{\substack{\text { mat }}}
$$

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

Multivariable Taylor Series Expansion

(First order approximation, two variables)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)
$$

partial derivative
$I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\text { treed ponit }} \delta t=I(x, y, t) \quad \begin{aligned} & \text { assuming small } \\ & \text { motion }\end{aligned}$

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

Multivariable Taylor Series Expansion

(First order approximation, two variables)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)
$$

$$
\begin{array}{rlrl}
I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =I(x, y, t) & \begin{array}{l}
\text { assuming small } \\
\text { motion }
\end{array} \\
\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =0 & & \text { cancel terms }
\end{array}
$$

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

Multivariable Taylor Series Expansion

(First order approximation, two variables)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)
$$

$$
\begin{array}{rlrl}
I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =I(x, y, t) & & \begin{array}{l}
\text { assuming small } \\
\text { motion }
\end{array} \\
& \frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =0 & \\
\text { divide by } \delta t \\
& & \text { take limit } \delta t \rightarrow 0
\end{array}
$$

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

Multivariable Taylor Series Expansion

(First order approximation, two variables)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)
$$

$$
\begin{array}{rlrl}
I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =I(x, y, t) & \begin{array}{l}
\text { assuming small } \\
\text { motion }
\end{array} \\
\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =0 & & \text { divide by } \delta t \\
\text { take limit } \delta t \rightarrow 0
\end{array}
$$

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

Multivariable Taylor Series Expansion

(First order approximation, two variables)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)
$$

$$
\begin{array}{rlrl}
I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =I(x, y, t) & \begin{array}{l}
\text { assuming small } \\
\text { motion }
\end{array} \\
& \frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =0 & \\
\text { divide by } \delta t \\
\text { take limit } \delta t \rightarrow 0
\end{array}
$$

$$
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0
$$

Brightness Constancy Equation

$$
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0
$$

$$
I_{x} u+I_{y} v+I_{t}=0 \quad \text { shorthand notation }
$$

$\nabla I^{\top} \boldsymbol{v}+I_{t}=0$
vector form

Brightness

 Constancy Equationvect
(putting the math aside for a second...)

What do the terms of the brightness constancy equation represent?

$$
I_{x} u+I_{y} v+I_{t}=0
$$

(putting the math aside for a second...)
What do the terms of the brightness constancy equation represent?
$I_{x} u+I_{y} v+I_{t}=0$

(at a point p)
(putting the math aside for a second...)
What do the terms of the brightness constancy equation represent?

(at a point p)
(putting the math aside for a second...)
What do the terms of the brightness constancy equation represent?

How do you compute these terms?

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\begin{gathered}
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y} \\
\text { spatial derivative }
\end{gathered}
$$

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\begin{gathered}
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y} \\
\text { spatial derivative }
\end{gathered}
$$

Forward difference
Sobel filter
Derivative-of-Gaussian filter

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$

$$
\begin{gathered}
I_{t}=\frac{\partial I}{\partial t} \\
\text { temporal derivative }
\end{gathered}
$$

Forward difference
Sobel filter
Derivative-of-Gaussian filter

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\begin{gathered}
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y} \\
\text { spatial derivative }
\end{gathered}
$$

Forward difference
Sobel filter
Derivative-of-Gaussian filter

$$
\begin{gathered}
I_{t}=\frac{\partial I}{\partial t} \\
\text { temporal derivative }
\end{gathered}
$$

frame differencing

Frame differencing

t					$t+1$					I_{t}			$\frac{\partial I}{\partial t}$	
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0
1	10	10	10	10	1	1	1	1	1	0	9	9	9	9
1	10	10	10	10	1	1	10	10	10	0	9	0	0	0
1	10	10	10	10	1	1	10	10	10	0	9	0	0	0
1	10	10	10	10	1	1	10	10	10	0	9	0	0	0

(example of a forward difference)

Example:

$I_{x}=\frac{\partial I}{\partial x}$

$I_{y}=\frac{\partial I}{\partial y}$

-1
0
1

$$
I_{t}=\frac{\partial I}{\partial t}
$$

$$
\begin{array}{|llll|l|l|}
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 0 & \mathbf{9} & \mathbf{9} & \mathbf{9} & \mathbf{9} \\
0 & \mathbf{9} & 0 & 0 & 0 \\
\hline 0 & \mathbf{9} & 0 & 0 & 0 \\
\hline 0 & \mathbf{9} & 0 & 0 & 0 \\
\hline
\end{array}
$$

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$

How do you compute this?

$$
\begin{gathered}
I_{t}=\frac{\partial I}{\partial t} \\
\text { temporal derivative }
\end{gathered}
$$

Forward difference Sobel filter
Derivative-of-Gaussian filter

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\begin{gathered}
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y} \\
\text { spatial derivative }
\end{gathered}
$$

Forward difference
Sobel filter
Derivative-of-Gaussian filter

$$
u=\frac{d x}{d t} \quad v=\frac{d y}{d t}
$$

We need to solve for this!
(this is the unknown in the optical flow problem)

$$
\begin{gathered}
I_{t}=\frac{\partial I}{\partial t} \\
\text { temporal derivative }
\end{gathered}
$$

frame differencing

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\begin{gathered}
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y} \\
\text { spatial derivative }
\end{gathered}
$$

Forward difference
Sobel filter
Derivative-of-Gaussian filter

(u, v)
Solution lies on a line

$$
\begin{gathered}
I_{t}=\frac{\partial I}{\partial t} \\
\text { temporal derivative }
\end{gathered}
$$

frame differencing

Cannot be found uniquely with a single constraint

Solution lies on a straight line

$$
I_{x} u+I_{y} v+I_{t}=0
$$

many combinations of u and v will satisfy the equality

The solution cannot be determined uniquely with a single constraint (a single pixel)

We need at least \qquad equations to solve for 2 unknowns.

Where do we get more equations (constraints)?

Constant flow

Where do we get more equations (constraints)?

$I_{x} u+I_{y} v+I_{t}=0$

Assume that the surrounding patch (say 5×5) has 'constant flow'

Assumptions:

Flow is locally smooth
Neighboring pixels have same displacement
Using a 5×5 image patch, gives us equations

Assumptions:

Flow is locally smooth
Neighboring pixels have same displacement
Using a 5×5 image patch, gives us 25 equations

$$
\begin{aligned}
I_{x}\left(\boldsymbol{p}_{1}\right) u+I_{y}\left(\boldsymbol{p}_{1}\right) v & =-I_{t}\left(\boldsymbol{p}_{1}\right) \\
I_{x}\left(\boldsymbol{p}_{2}\right) u+I_{y}\left(\boldsymbol{p}_{2}\right) v & =-I_{t}\left(\boldsymbol{p}_{2}\right)
\end{aligned}
$$

$$
I_{x}\left(\boldsymbol{p}_{25}\right) u+I_{y}\left(\boldsymbol{p}_{25}\right) v=-I_{t}\left(\boldsymbol{p}_{25}\right)
$$

Equivalent to solving:

$$
\begin{array}{cc}
A^{\top} A & \hat{x}
\end{array} c A^{\top} b .
$$

where the summation is over each pixel \boldsymbol{p} in patch \boldsymbol{P}

$$
x=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

Equivalent to solving:

$$
\begin{array}{cc}
A^{\top} A & \hat{x}
\end{array} c A^{\top} b .
$$

where the summation is over each pixel \boldsymbol{p} in patch \boldsymbol{P}

When is this solvable?

$$
A^{\top} A \hat{x}=A^{\top} b
$$

When is this solvable?

$A^{\top} A \hat{x}=A^{\top} b$

$A^{\top} A$ should be invertible

$A^{\top} A$ should not be too small

λ_{1} and λ_{2} should not be too small

$A^{\top} A$ should be well conditioned

$\lambda_{1} / \lambda_{2}$ should not be too large ($\lambda_{1}=$ larger eigenvalue $)$

Where have you seen this before?

$$
A^{\top} A=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Where have you seen this before?

$$
A^{\top} A=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Harris Corner Detector!

Where have you seen this before?

$$
A^{\top} A=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Harris Corner Detector!

What are the implications?

Implications

- Corners are when $\lambda 1, \lambda 2$ are big; this is also when Lucas-Kanade optical flow works best
- Corners are regions with two different directions of gradient (at least)
- Corners are good places to compute flow!

You want to compute optical flow. What happens if the image patch contains only a line?

Barber's pole illusion

Barber's pole illusion

Barber's pole illusion

Aperture Problem

In which direction is the line moving?

Aperture Problem

In which direction is the line moving?

Aperture Problem

Aperture Problem

Aperture Problem

Aperture Problem

Want patches with different gradients to the avoid aperture problem

Want patches with different gradients to the avoid aperture problem

$$
\begin{aligned}
& H(x, y)=y \\
& \text { I(x,y) }
\end{aligned}
$$

$$
\begin{aligned}
& I_{x} u+I_{y} v+I_{t}=0
\end{aligned}
$$

Compute gradients
Solution:

$$
\begin{aligned}
& I_{x}(3,3)=0 \\
& I_{y}(3,3)=1 \\
& I_{t}(3,3)=I(3,3)-H(3,3)=-1
\end{aligned}
$$

We recover the v of the optical flow but not the u. This is the aperture problem.

Horn-Schunck optical flow

Horn-Schunck Optical Flow (1981)

Lucas-Kanade Optical Flow (1981)

‘smooth’ flow

(flow can vary from pixel to pixel)
global method
(dense)
'constant’ flow
(flow is constant for all pixels)
local method
(sparse)

Smoothness

most objects in the world are rigid or deform elastically moving together coherently

we expect optical flow fields to be smooth

Key idea
 (of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Key idea
 (of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce brightness constancy

$$
I_{x} u+I_{y} v+I_{t}=0
$$

For every pixel,

$$
\min _{u, v}\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}
$$

Enforce brightness constancy

$$
I_{x} u+I_{y} v+I_{t}=0
$$

For every pixel,

Key idea
 (of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce smooth flow field

u-component of flow

Which flow field optimizes the objective?

$$
\min _{\boldsymbol{u}}\left(u_{i, j}-u_{i+1, j}\right)^{2}
$$

$$
\sum_{i j}\left(u_{i j}-u_{i+1, j}\right)^{2}
$$

?
$\sum_{i j}\left(u_{i j}-u_{i+1, j}\right)^{2}$

Which flow field optimizes the objective? $\underset{\boldsymbol{u}}{\min }\left(u_{i, j}-u_{i+1, j}\right)^{2}$

big

small

Key idea
 (of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow
bringing it all together...

Horn-Schunck optical flow

HS optical flow objective function

Brightness constancy
 $$
E_{d}(i, j)=\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}
$$

Smoothness

$$
E_{s}(i, j)=\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]
$$

How do we solve this minimization problem?

$$
\min _{\boldsymbol{u}, \boldsymbol{v}} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}
$$

How do we solve this minimization problem?

$$
\min _{\boldsymbol{u}, \boldsymbol{v}} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}
$$

Compute partial derivative, derive update equations (gradient decent!)

Compute the partial derivatives of this huge sum!

$$
\sum_{i j}\left\{\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]+\lambda\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}\right\}
$$

Compute the partial derivatives of this huge sum!

$$
\sum_{i j}\left\{\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]+\lambda\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}\right\}
$$

it's not so bad...

$$
\frac{\partial E}{\partial u_{k l}}=
$$

how many u terms depend on k and l?

Compute the partial derivatives of this huge sum!

$$
\sum_{i j}\left\{\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]+\lambda\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}\right\}
$$

it's not so bad...

$$
\frac{\partial E}{\partial u_{k l}}=
$$

how many u terms depend on k and l?

Compute the partial derivatives of this huge sum!

$$
\sum_{i j}\left\{\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]+\lambda\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}\right\}
$$

it's not so bad...

$$
\frac{\partial E}{\partial u_{k l}}=2\left(u_{k l}-\bar{u}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{x}
$$

how many u terms depend on k and l?

Compute the partial derivatives of this huge sum!

$$
\begin{aligned}
& \sum_{i j}\left\{\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]+\lambda\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}\right\} \\
& \left(u_{i j}^{2}-2 u_{i j} u_{i+1, j}+u_{i+1, j}^{2}\right) \quad\left(u_{i j}^{2}-2 u_{i j} u_{i, j+1}+u_{i, j+1}^{2}\right) \\
& \text { (variable will appear four times in sum) }
\end{aligned}
$$

Compute the partial derivatives of this huge sum!

$$
\begin{aligned}
& \sum_{i j}\left\{\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]+\lambda\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}\right\} \\
& \\
& \text { (variable will appear four times in sum) } \\
& \left(u_{i j}^{2}-2 u_{i j} u_{i+1, j}+u_{i+1, j}^{2}\right) \\
& \left(u_{i j}^{2}-2 u_{i j} u_{i, j+1}+u_{i, j+1}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial u_{k l}} & =2\left(u_{k l}-\bar{u}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{x} \\
\frac{\partial E}{\partial v_{k l}} & =2\left(v_{k l}-\bar{v}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{y}
\end{aligned}
$$

$$
\bar{u}_{i j}=\frac{1}{4}\left\{u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right\}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial u_{k l}} & =2\left(u_{k l}-\bar{u}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{x} \\
\frac{\partial E}{\partial v_{k l}} & =2\left(v_{k l}-\bar{v}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{y}
\end{aligned}
$$

Where are the extrema of E ?

$$
\begin{aligned}
\frac{\partial E}{\partial u_{k l}} & =2\left(u_{k l}-\bar{u}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{x} \\
\frac{\partial E}{\partial v_{k l}} & =2\left(v_{k l}-\bar{v}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{y}
\end{aligned}
$$

Where are the extrema of E ?

(set derivatives to zero and solve for unknowns u and v)

$$
\begin{aligned}
& \left(1+\lambda I_{x}^{2}\right) u_{k l}+\lambda I_{x} I_{y} v_{k l}=\bar{u}_{k l}-\lambda I_{x} I_{t} \\
& \lambda I_{x} I_{y} u_{k l}+\left(1+\lambda I_{y}^{2}\right) v_{k l}=\bar{v}_{k l}-\lambda I_{y} I_{t}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial u_{k l}} & =2\left(u_{k l}-\bar{u}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{x} \\
\frac{\partial E}{\partial v_{k l}} & =2\left(v_{k l}-\bar{v}_{k l}\right)+2 \lambda\left(I_{x} u_{k l}+I_{y} v_{k l}+I_{t}\right) I_{y}
\end{aligned}
$$

Where are the extrema of E ?

(set derivatives to zero and solve for unknowns u and v)

$$
\begin{aligned}
& \left(1+\lambda I_{x}^{2}\right) u_{k l}+\lambda I_{x} I_{y} v_{k l}=\bar{u}_{k l}-\lambda I_{x} I_{t} \\
& \lambda I_{x} I_{y} u_{k l}+\left(1+\lambda I_{y}^{2}\right) v_{k l}=\bar{v}_{k l}-\lambda I_{y} I_{t}
\end{aligned}
$$

$\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ how do you solve this?

$$
\begin{aligned}
& \left(1+\lambda I_{x}^{2}\right) u_{k l}+\lambda I_{x} I_{y} v_{k l}=\bar{u}_{k l}-\lambda I_{x} I_{t} \\
& \lambda I_{x} I_{y} u_{k l}+\left(1+\lambda I_{y}^{2}\right) v_{k l}=\bar{v}_{k l}-\lambda I_{y} I_{t}
\end{aligned}
$$

$$
\text { Recall } \boldsymbol{x}=\mathbf{A}^{-1} \boldsymbol{b}=\frac{\operatorname{adj} \mathbf{A}}{\operatorname{det} \mathbf{A}} \boldsymbol{b}
$$

$$
\begin{aligned}
& \left(1+\lambda I_{x}^{2}\right) u_{k l}+\lambda I_{x} I_{y} v_{k l}=\bar{u}_{k l}-\lambda I_{x} I_{t} \\
& \lambda I_{x} I_{y} u_{k l}+\left(1+\lambda I_{y}^{2}\right) v_{k l}=\bar{v}_{k l}-\lambda I_{y} I_{t}
\end{aligned}
$$

Recall $\boldsymbol{x}=\mathbf{A}^{-1} \boldsymbol{b}=\frac{\operatorname{adj} \mathbf{A}}{\operatorname{det} \mathbf{A}} \boldsymbol{b}$

Same as the linear system:

$$
\begin{aligned}
& \left\{1+\lambda\left(I_{x}^{2}+I_{y}^{2}\right)\right\} u_{k l}=\left(1+\lambda I_{y}^{2}\right) \bar{u}_{k l}-\lambda I_{x} I_{y} \bar{v}_{k l}-\lambda I_{x} I_{t} \\
& \left\{1+\underset{(\operatorname{det~A)}}{\left.\lambda\left(I_{x}^{2}+I_{y}^{2}\right)\right\} v_{k l}=\left(1+\lambda I_{x}^{2}\right) \bar{v}_{k l}-\lambda I_{x} I_{y} \bar{u}_{k l}-\lambda I_{y} I_{t}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{1+\lambda\left(I_{x}^{2}+I_{y}^{2}\right)\right\} u_{k l}=\left(1+\lambda I_{y}^{2}\right) \bar{u}_{k l}-\lambda I_{x} I_{y} \bar{v}_{k l}-\lambda I_{x} I_{t} \\
& \left\{1+\lambda\left(I_{x}^{2}+I_{y}^{2}\right)\right\} v_{k l}=\left(1+\lambda I_{x}^{2}\right) \bar{v}_{k l}-\lambda I_{x} I_{y} \bar{u}_{k l}-\lambda I_{y} I_{t}
\end{aligned}
$$

Rearrange to get update equations:

$$
\begin{aligned}
& \hat{u}_{k l}=\bar{u}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda^{-1}+I_{x}^{2}+I_{y}^{2}} I_{x} \\
& \text { vavereage } \\
& \hat{v}_{k l}=\bar{v}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda^{-1}+I_{x}^{2}+I_{y}^{2}} I_{y}
\end{aligned}
$$

Recall|: $\min _{\boldsymbol{u}, \boldsymbol{v}} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}$

When lambda is small (lambda inverse is big)...

$$
\begin{gathered}
\hat{u}_{k l}=\bar{u}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda^{-1}+I_{x}^{2}+I_{y}^{2}} I_{x} \\
\text { valde } \\
\hat{v}_{k l}=\bar{v}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda^{-1}+I_{x}^{2}+I_{y}^{2}} I_{y}
\end{gathered}
$$

Recall: $\min _{\boldsymbol{u}, \boldsymbol{v}} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}$

When lambda is small (lambda inverse is big)...

$$
\begin{aligned}
& \hat{v}_{k l}=\bar{v}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda-1+I_{x}^{2}+I_{y}^{2}} I_{y}^{\text {geasio }}
\end{aligned}
$$

Recall: $\min _{\boldsymbol{u}, \boldsymbol{v}} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}$

When lambda is small (lambda inverse is big)...

$$
\begin{aligned}
& \hat{u}_{k l}=\bar{u}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda{ }^{\text {ode }}} \underset{\substack{1 \\
\text { vawe } \\
\text { vacease }}}{-I_{x}^{2}+I_{y}^{2}} \vec{I}_{x}^{\text {goestio }} \\
& \hat{v}_{k l}=\bar{v}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda-1+I_{x}^{2}+I_{y}^{2}} I_{y}
\end{aligned}
$$

...we only care about smoothness.
ok, take a step back, why did we do all this math?

We are solving for the optical flow (u,v) given two constraints

$$
\begin{gathered}
\sum_{i j}\left\{\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]+\lambda\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}\right\} \\
\text { smoothness } \\
\text { brightness constancy }
\end{gathered}
$$

We needed the math to minimize this (now to the algorithm)

Horn-Schunck
 Optical Flow Algorithm

1. Precompute image gradients

$$
I_{y} \quad I_{x}
$$

2. Precompute temporal gradients

$$
I_{t}
$$

3. Initialize flow field

$$
\begin{aligned}
\boldsymbol{u} & =\mathbf{0} \\
\boldsymbol{v} & =\mathbf{0}
\end{aligned}
$$

4. While not converged

Compute flow field updates for each pixel:

$$
\hat{u}_{k l}=\bar{u}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda^{-1}+I_{x}^{2}+I_{y}^{2}} I_{x} \quad \hat{v}_{k l}=\bar{v}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda^{-1}+I_{x}^{2}+I_{y}^{2}} I_{y}
$$

Just 8 lines of code!

