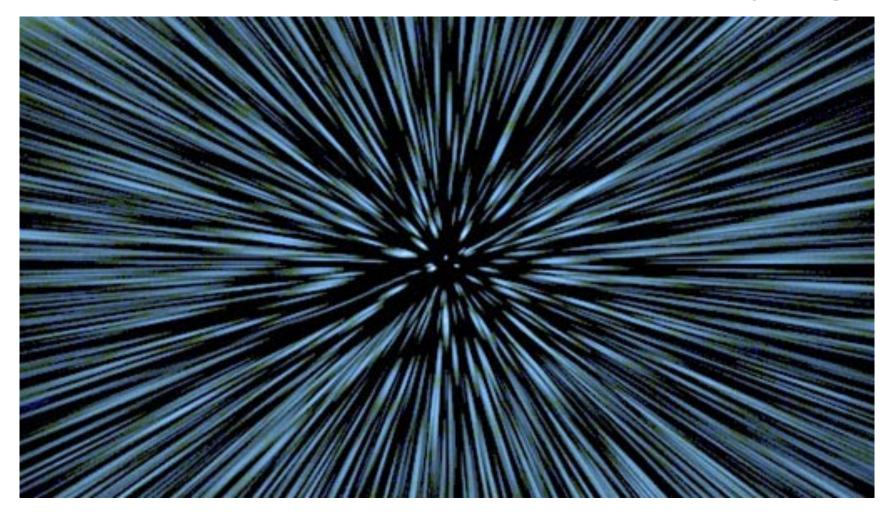
2D transformations (a.k.a. warping)



Overview of today's lecture

- Reminder: image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Slide credits

Most of these slides were adapted from:

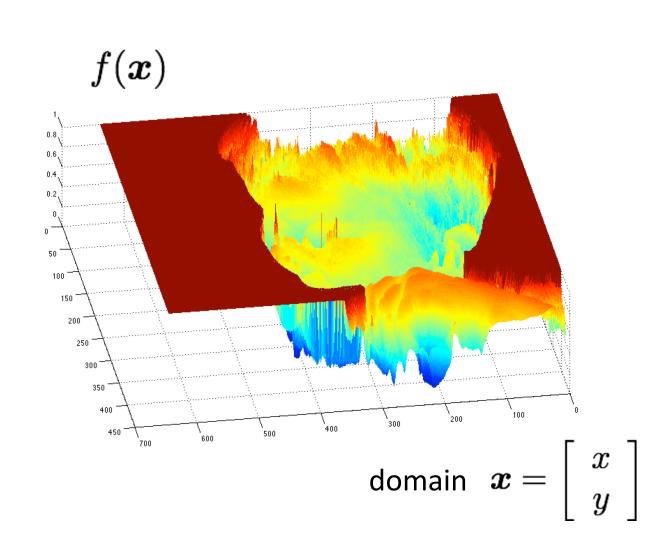
Kris Kitani (16-385, Spring 2017).

Reminder: image transformations

What is an image?

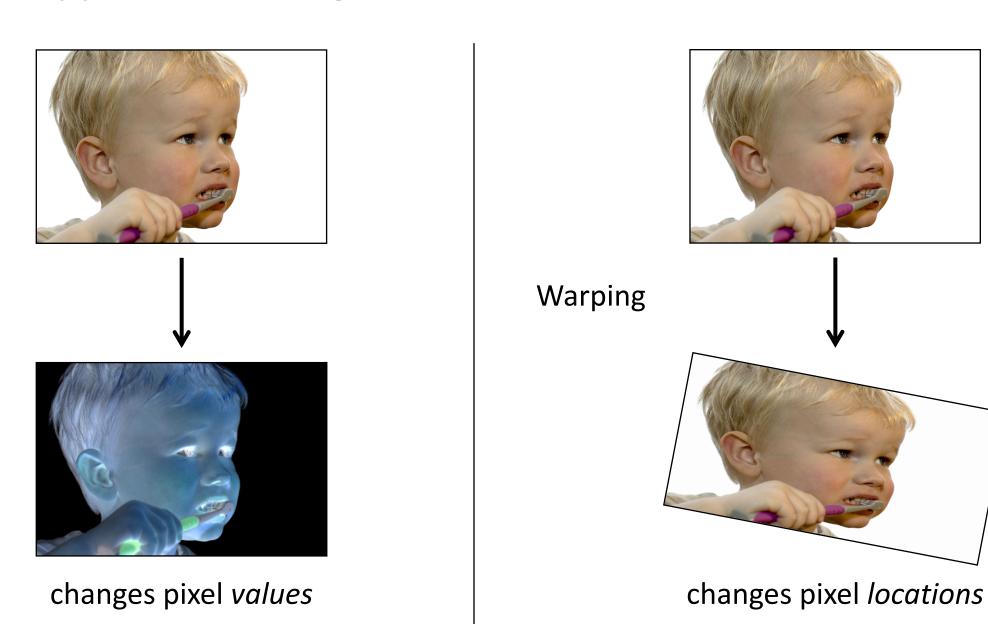
grayscale image

What is the range of the image function f?



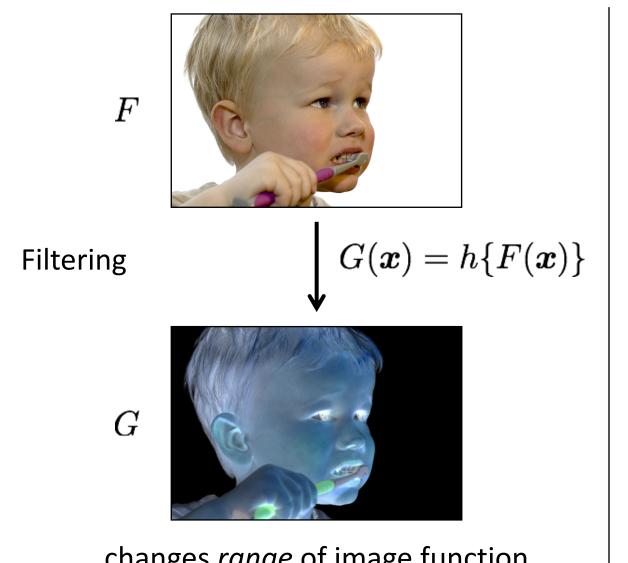
A (grayscale) image is a 2D function.

What types of image transformations can we do?

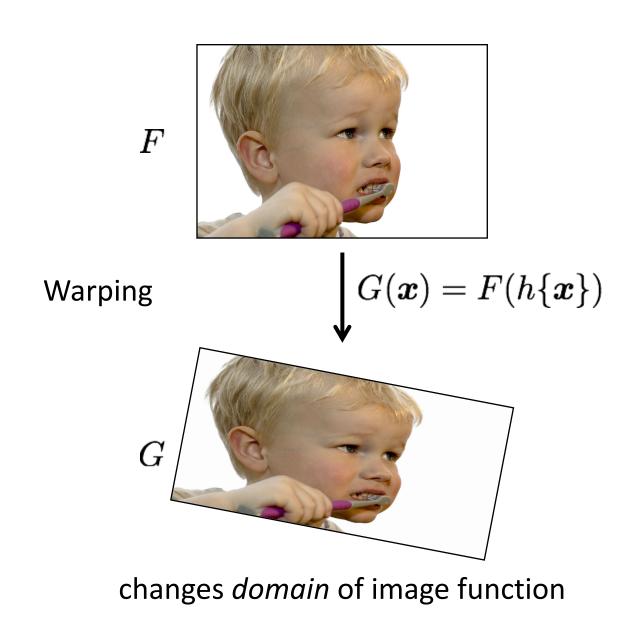


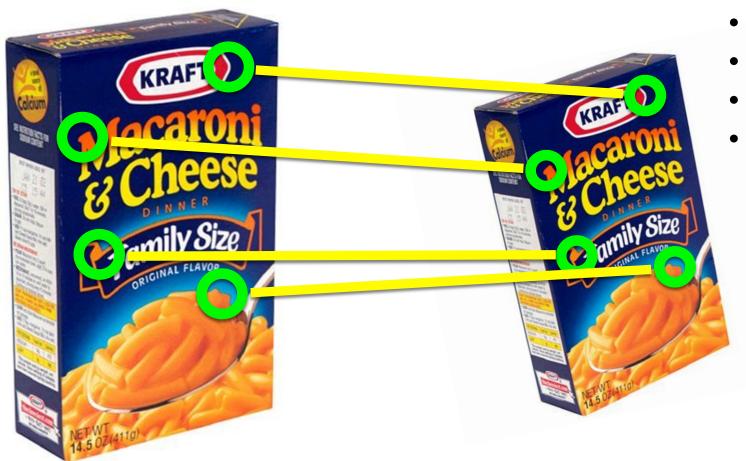
Filtering

What types of image transformations can we do?



changes range of image function

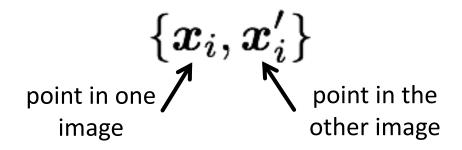




- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

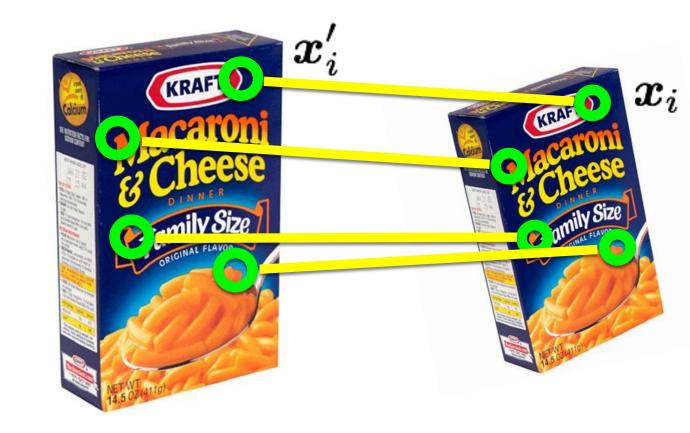
Given a set of matched feature points:



and a transformation:

$$oldsymbol{x}' = oldsymbol{f}(oldsymbol{x}; oldsymbol{p})$$
 transformation $oldsymbol{\nearrow}$ parameters function

find the best estimate of the parameters



 \boldsymbol{p}

2D transformations

2D transformations

translation

rotation

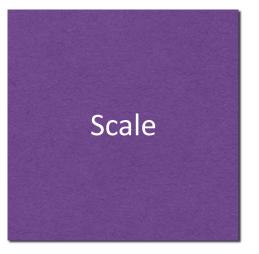
aspect

affine

perspective

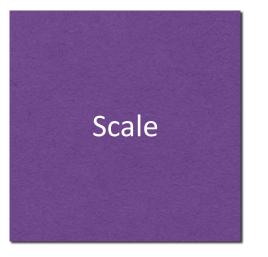
cylindrical

u



How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component



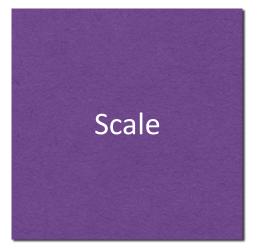
$$x' = ax$$

$$x' = ax$$
$$y' = by$$

What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

y

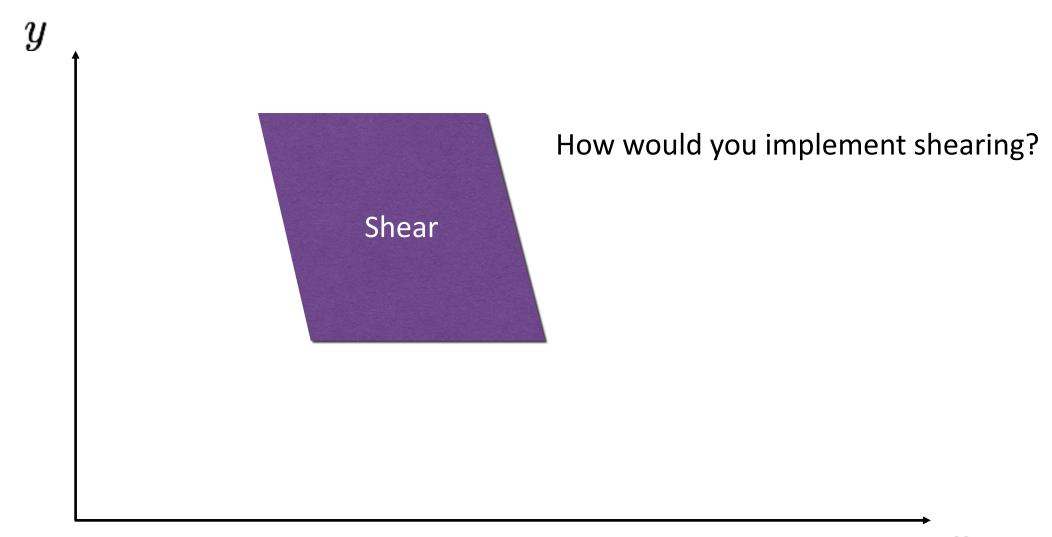


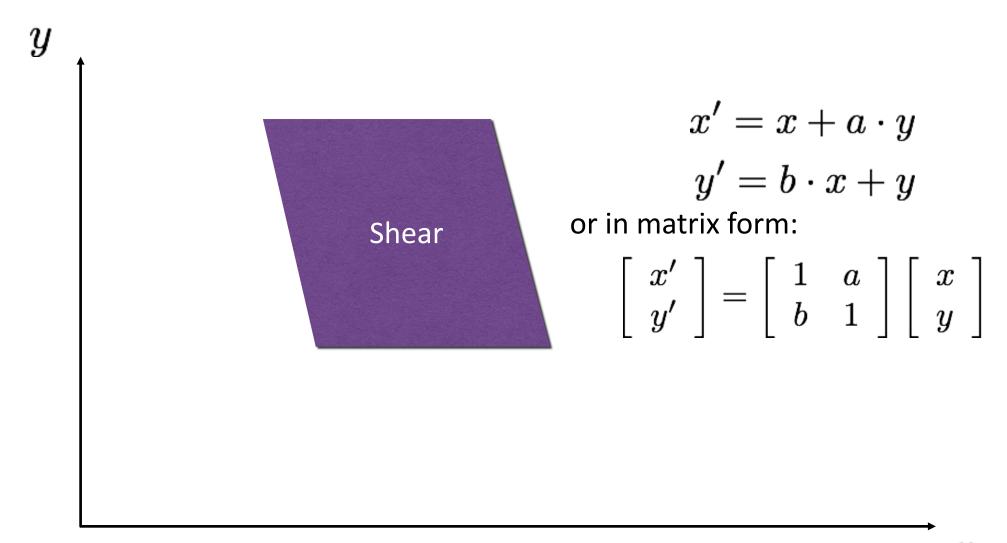
$$x' = ax$$
$$y' = by$$

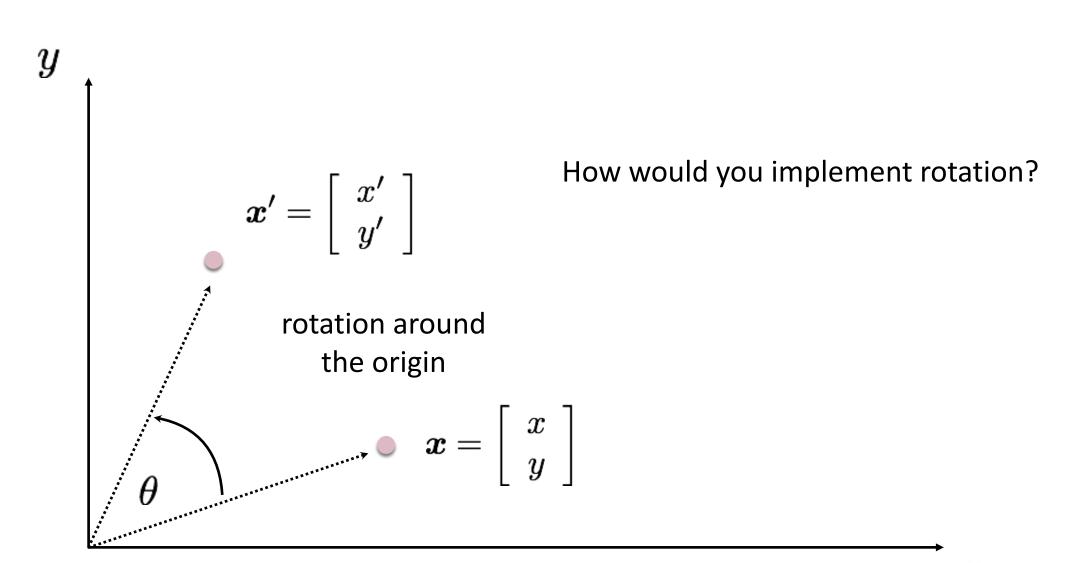
matrix representation of scaling:

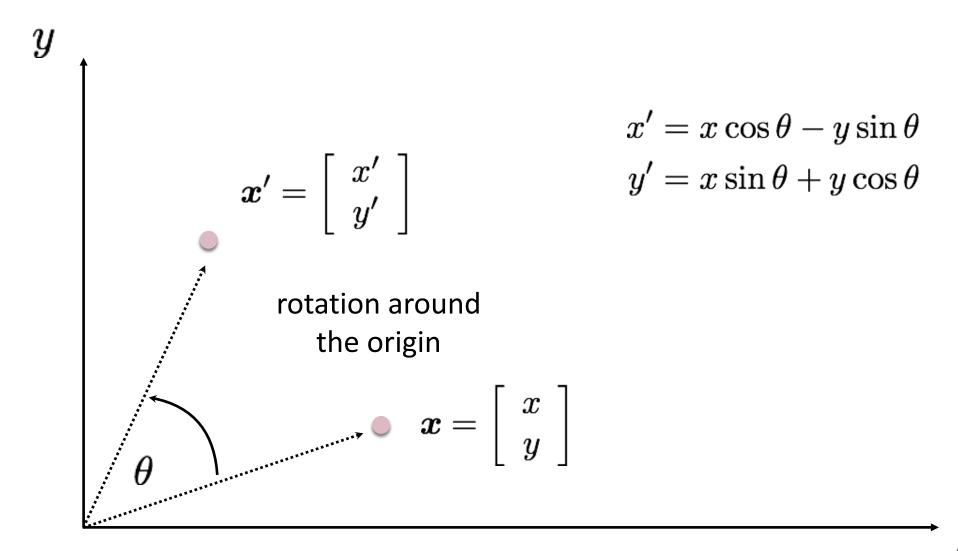
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

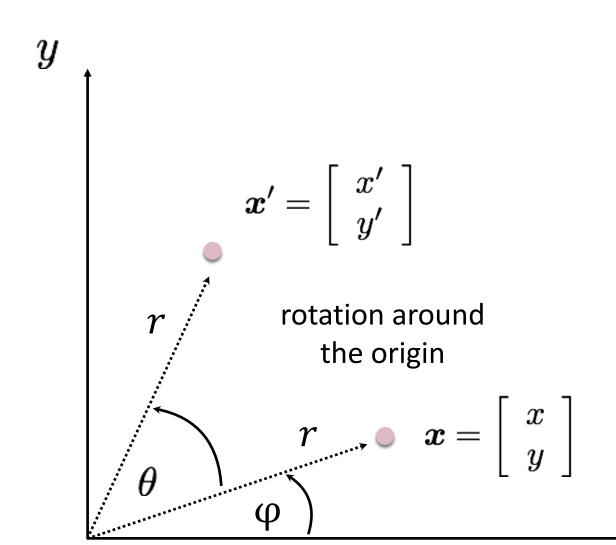
- Each component multiplied by a scalar
- Uniform scaling same scalar for each component











Polar coordinates...

$$x = r \cos (\phi)$$

 $y = r \sin (\phi)$
 $x' = r \cos (\phi + \theta)$
 $y' = r \sin (\phi + \theta)$

Trigonometric Identity...

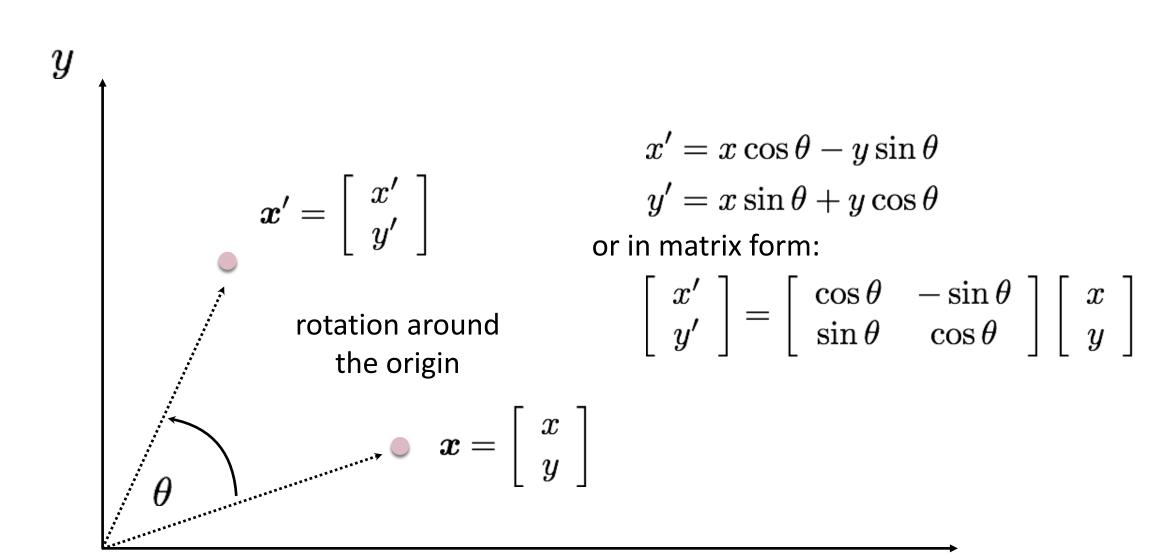
$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

 $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$



2D planar and linear transformations

$$x' = f(x; p)$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$$
parameters p point x

2D planar and linear transformations

Scale

$$\mathbf{M} = \left[egin{array}{ccc} s_x & 0 \ 0 & s_y \end{array}
ight]$$

Flip across y

$$\mathbf{M} = \left[egin{array}{ccc} s_x & 0 \ 0 & s_y \end{array}
ight] \qquad \mathbf{M} = \left[egin{array}{ccc} -1 & 0 \ 0 & 1 \end{array}
ight]$$

Rotate

$$\mathbf{M} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Flip across origin

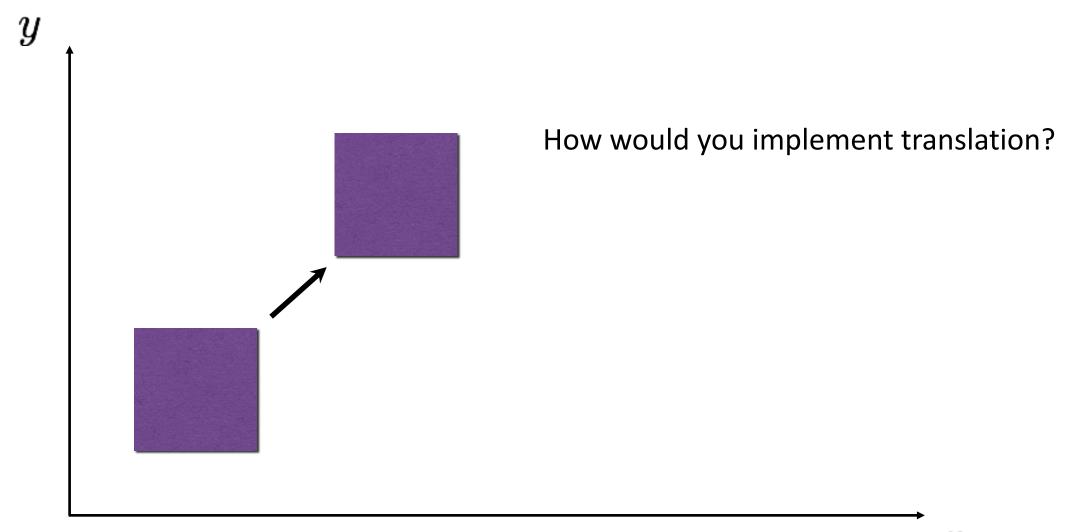
$$\mathbf{M} = \left| \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right|$$

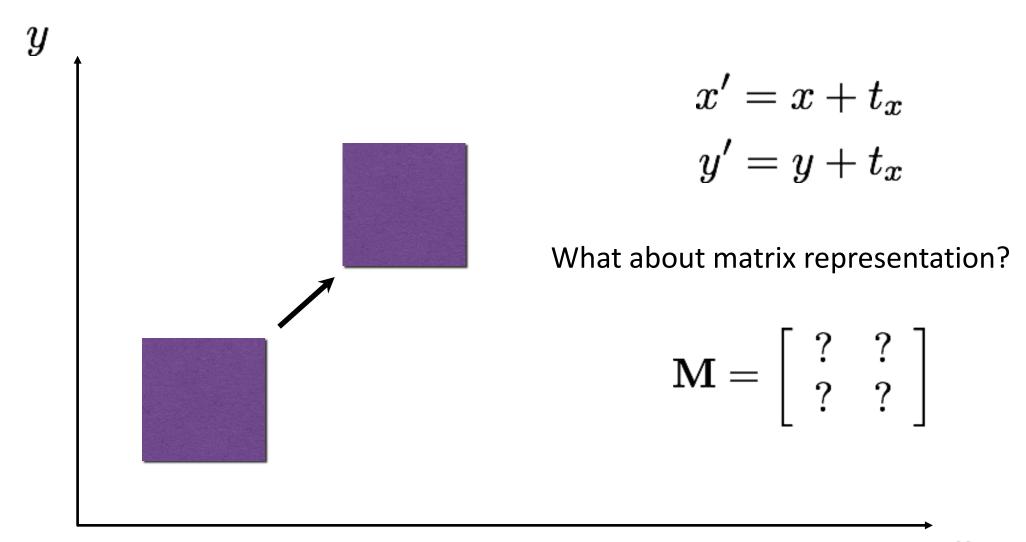
Shear

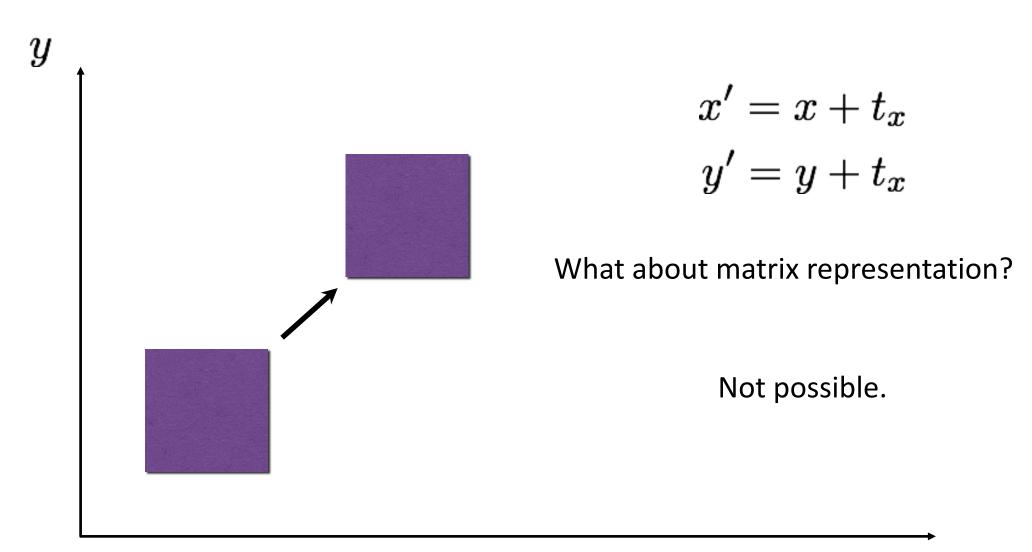
$$\mathbf{M} = \left[egin{array}{ccc} 1 & s_x \ s_y & 1 \end{array}
ight] \qquad \qquad \mathbf{M} = \left[egin{array}{ccc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

Identity

$$\mathbf{M} = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]$$







Projective geometry 101

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix}$$
 add a 1 here

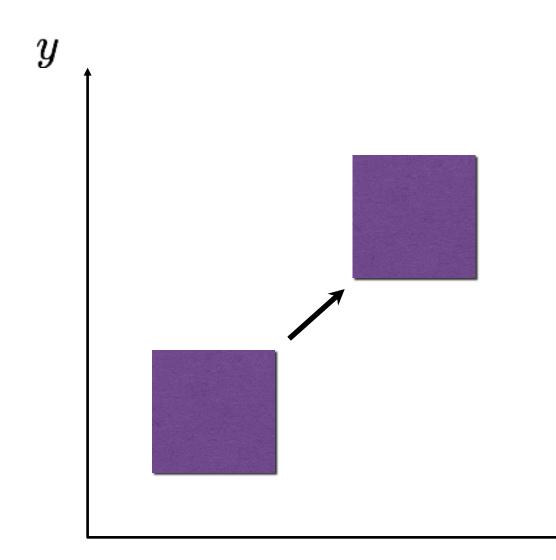
Represent 2D point with a 3D vector

Homogeneous coordinates

heterogeneous homogeneous coordinates coordinates

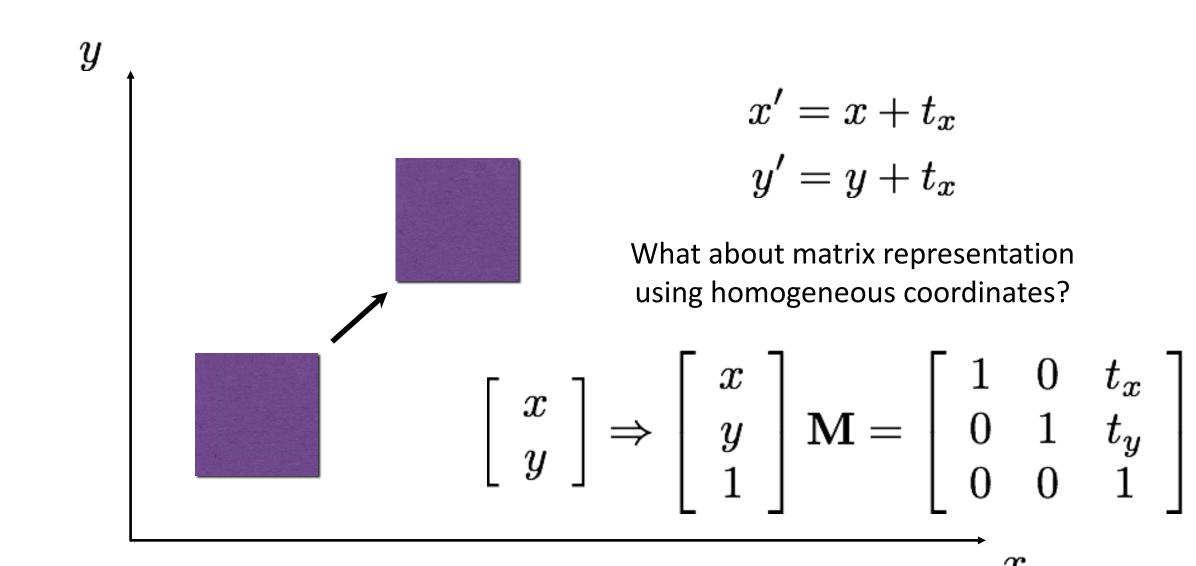
$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} ax \\ ay \\ a \end{bmatrix}$$

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale



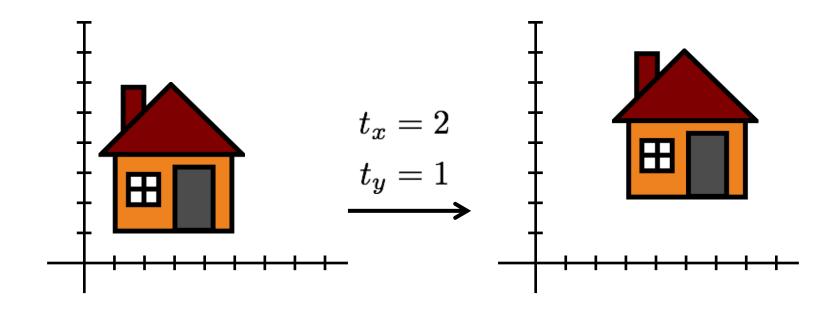
$$x' = x + t_x$$
$$y' = y + t_x$$

What about matrix representation using homogeneous coordinates?



2D translation using homogeneous coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$



Homogeneous coordinates

Conversion:

heterogeneous → homogeneous

$$\left[\begin{array}{c} x \\ y \end{array}\right] \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

homogeneous → heterogeneous

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w \\ y/w \end{array}\right]$$

scale invariance

Special points:

point at infinity

$$\left[egin{array}{cccc} x & y & 0 \end{array}
ight]$$

undefined

$$[\begin{array}{cccc}0&0&0\end{array}]$$

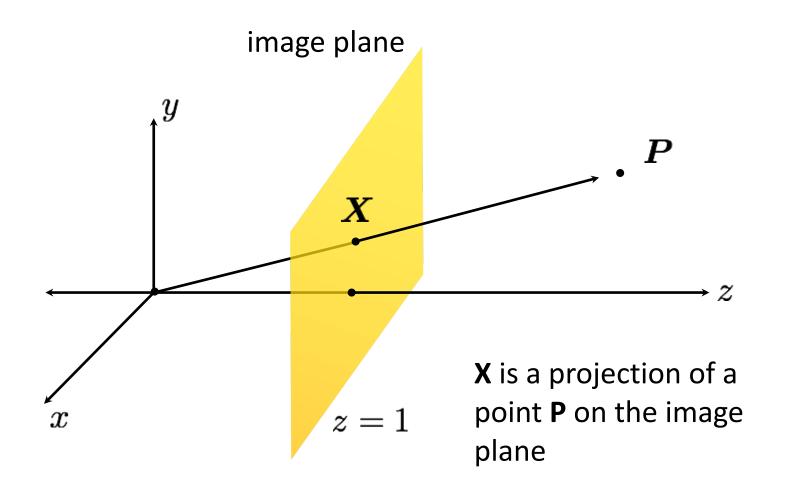
Projective geometry

image point in $oldsymbol{x} = \left| egin{array}{c} x \ y \end{array} \right|$

$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

image point in homogeneous $oldsymbol{X} = \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$

$$oldsymbol{X} = \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$$



Transformations in projective geometry

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ &$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
shearing

Re-write these transformations as 3x3 matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotation

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$
scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

shearing

Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{P} = \mathbf{P} = \mathbf{P} = \mathbf{P}$$

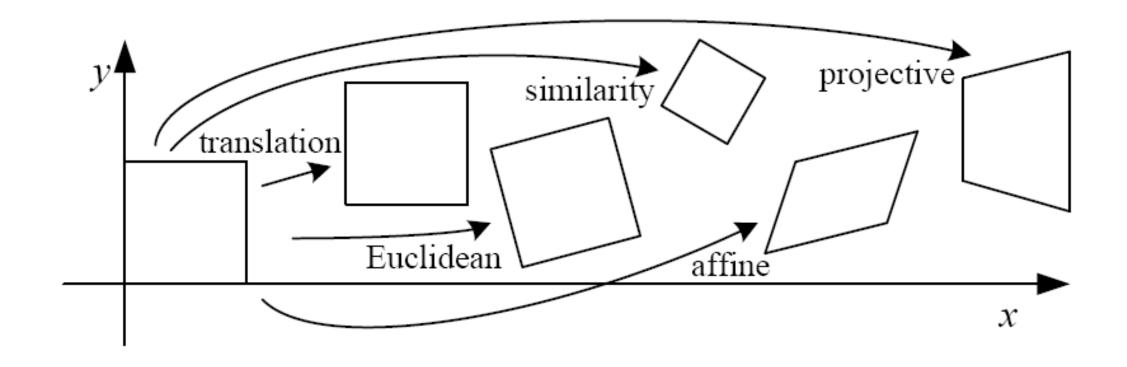
Matrix composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \text{translation}(\mathbf{t}_{x}, \mathbf{t}_{y}) \qquad \text{rotation}(\theta) \qquad \text{scale}(\mathbf{s}, \mathbf{s}) \qquad \mathbf{p}$$

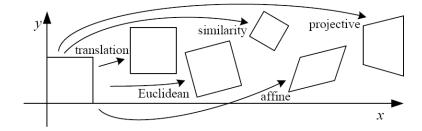
Does the multiplication order matter?



Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]$?
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & t \end{array} ight]$?
similarity	$\left[\begin{array}{c c} sR & t \end{array}\right]$?
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]$?
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]$?

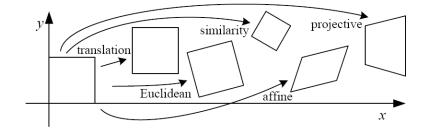
Translation:
$$\begin{bmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix}$$

How many degrees of freedom?



Euclidean (rigid): rotation + translation
$$egin{bmatrix} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ 0 & 0 & 1 \ \end{bmatrix}$$

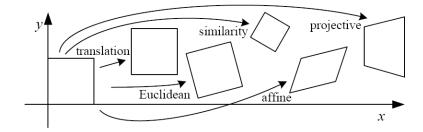
Are there any values that are related?



Euclidean (rigid): rotation + translation

$$egin{bmatrix} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$

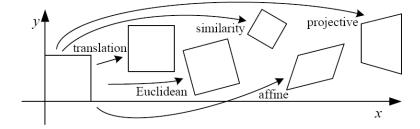
How many degrees of freedom?



which other matrix values will change if this increases?

Euclidean (rigid): rotation + translation

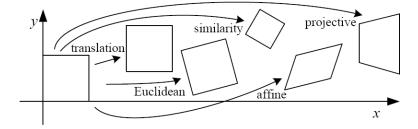
$$\begin{bmatrix} lack & lack & \cos heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$



what will happen to the image if this increases?

Euclidean (rigid): rotation + translation

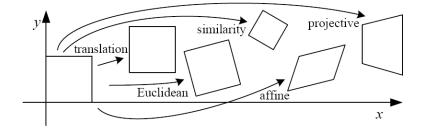
$$egin{bmatrix} lacksquare & lacksquare \ \cos heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$



what will happen to the image if this increases?

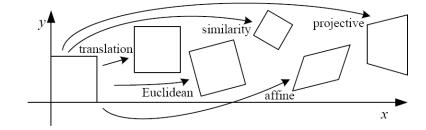
Euclidean (rigid): rotation + translation

$$\begin{bmatrix} \cos heta & -\sin heta & r_3 \ \sin heta & \cos heta & r_6 \ 0 & 0 & 1 \end{bmatrix}$$



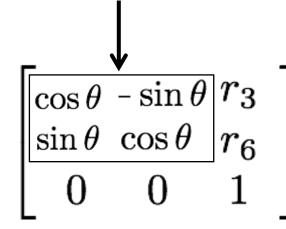
Similarity: uniform scaling + rotation + translation
$$\begin{bmatrix} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ 0 & 0 & 1 \end{bmatrix}$$

Are there any values that are related?

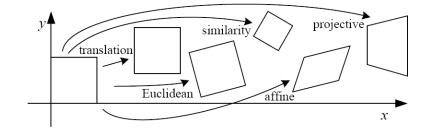




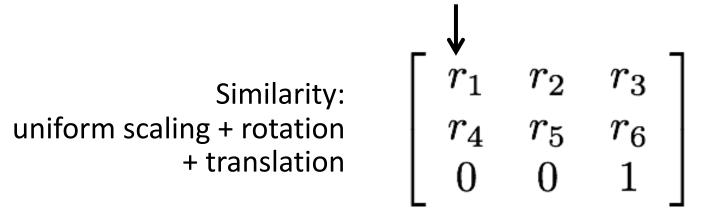
Similarity: uniform scaling + rotation + translation

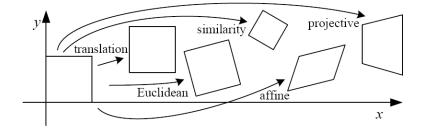


How many degrees of freedom?



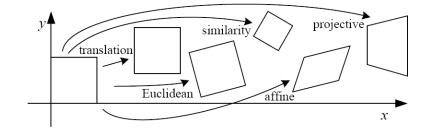
what will happen to the image if this increases?





Affine transform: uniform scaling + shearing + rotation + translation

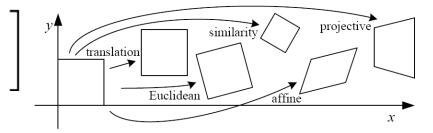
Are there any values that are related?



Affine transform: uniform scaling + shearing + rotation + translation
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

Are there any values that are related?

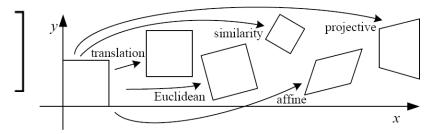
similarity shear
$$\left[egin{array}{ccc} sr_1 & sr_2 \ sr_3 & sr_4 \end{array}
ight] \left[egin{array}{ccc} 1 & h_1 \ h_2 & 1 \end{array}
ight] = \left[egin{array}{ccc} sr_1 + h_2 sr_2 & sr_2 + h_1 sr_1 \ sr_3 + h_2 sr_4 & sr_4 + h_1 sr_3 \end{array}
ight]$$



Affine transform: uniform scaling + shearing + rotation + translation
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

How many degrees of freedom?

similarity shear
$$\left[\begin{array}{cc} sr_1 & sr_2 \\ sr_3 & sr_4 \end{array}\right] \left[\begin{array}{cc} 1 & h_1 \\ h_2 & 1 \end{array}\right] = \left[\begin{array}{cc} sr_1 + h_2sr_2 & sr_2 + h_1sr_1 \\ sr_3 + h_2sr_4 & sr_4 + h_1sr_3 \end{array}\right]^{\frac{1}{p}}$$



Affine transformations

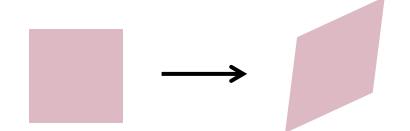
Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms



Does the last coordinate w ever change?

Affine transformations

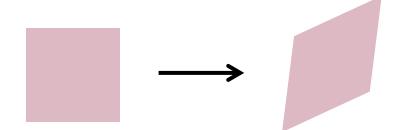
Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved
- compositions of affine transforms are also affine transforms



Nope! But what does that mean?

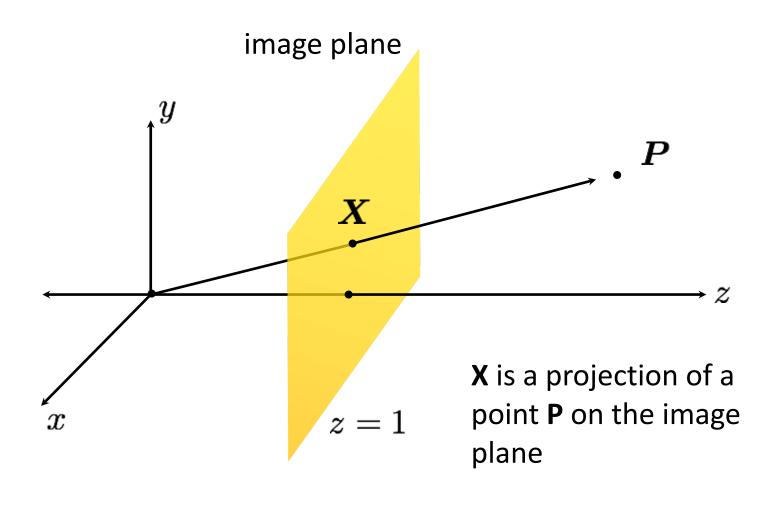
How to interpret affine transformations here?



$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

image point in heterogeneous $m{X} = \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$ coordinates

$$oldsymbol{X} = \left[egin{array}{c} x \\ y \\ 1 \end{array}
ight]$$



Projective transformations (aka homographies)

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

How many degrees of freedom?

Projective transformations (aka homographies)

Projective transformations are combinations of

- affine transformations; and
- projective wraps

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved
- compositions of projective transforms are also projective transforms

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

8 DOF: vectors (and therefore matrices) are defined up to scale)

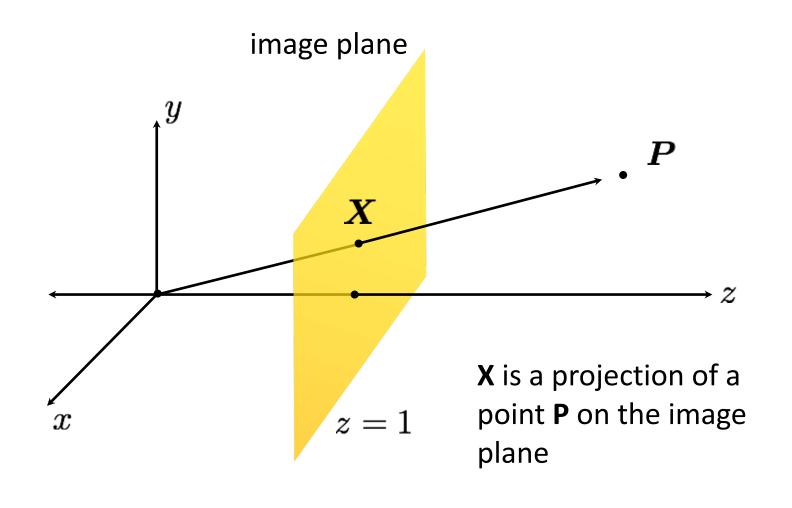
How to interpret projective transformations here?

image point in $oldsymbol{x} = \left| egin{array}{c} x \ y \end{array} \right|$ pixel coordinates

$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight]$$

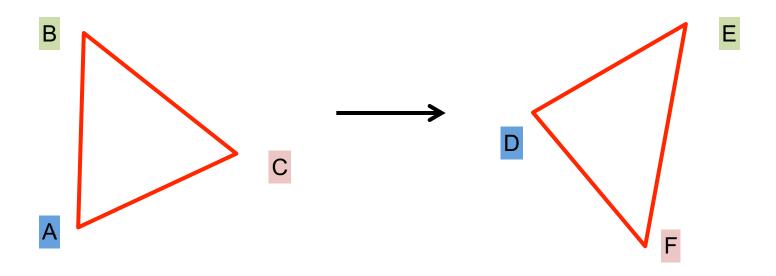
image point in heterogeneous $oldsymbol{X} = \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$

$$oldsymbol{X} = \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$$



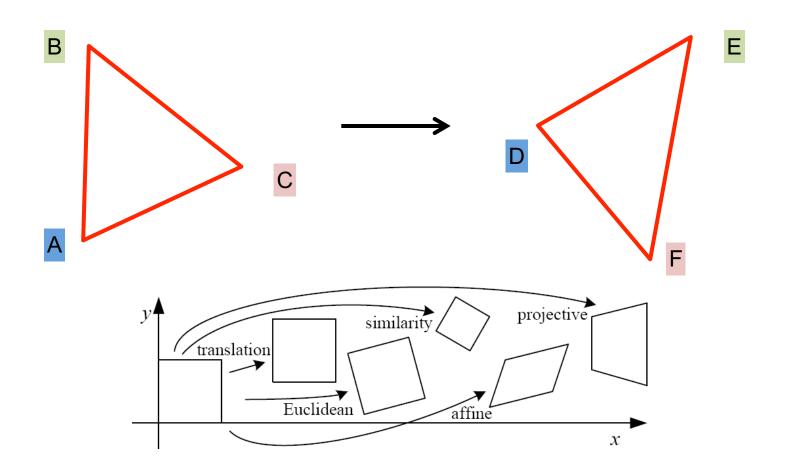
Determining unknown (affine) 2D transformations

Suppose we have two triangles: ABC and DEF.



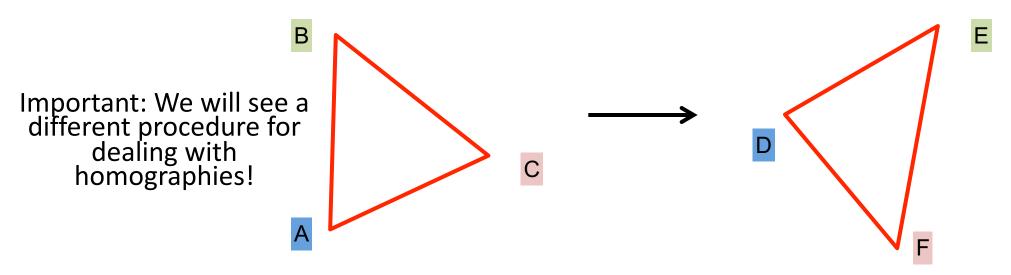
Suppose we have two triangles: ABC and DEF.

• What type of transformation will map A to D, B to E, and C to F?



Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?



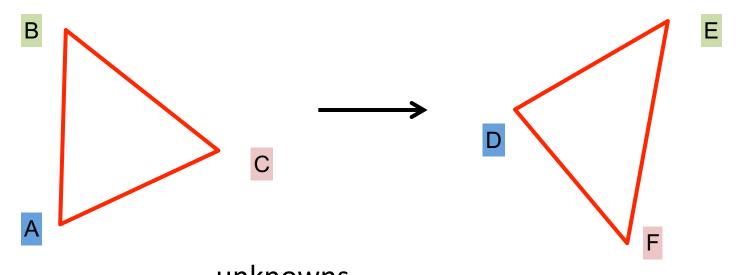
Affine transform: uniform scaling + shearing + rotation + translation

$$egin{array}{ccccc} a_1 & a_2 & a_3 \ a_4 & a_5 & a_6 \ 0 & 0 & 1 \ \end{array}$$

How many degrees of freedom do we have?

Suppose we have two triangles: ABC and DEF.

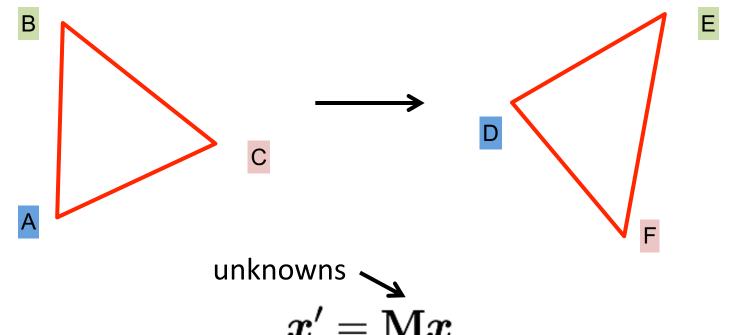
- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?



- unknowns x' = Mxpoint correspondences
- One point correspondence gives how many equations?
- How many point correspondences do we need?

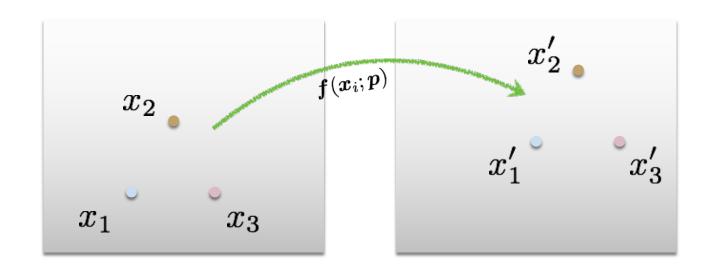
Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?
- How do we determine the unknown parameters?



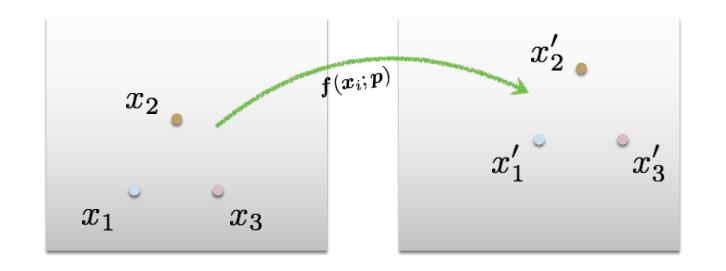
point correspondences

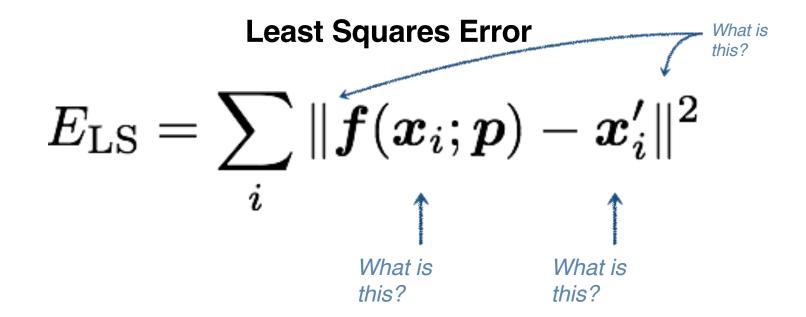
How do we solve this for **M**?

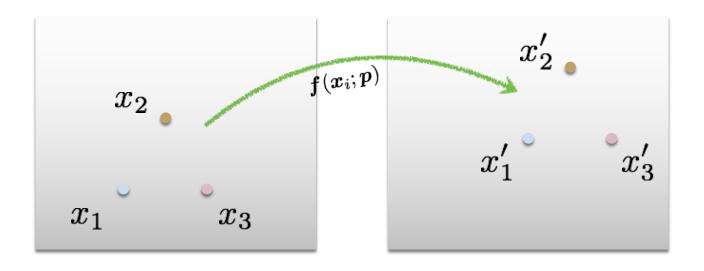


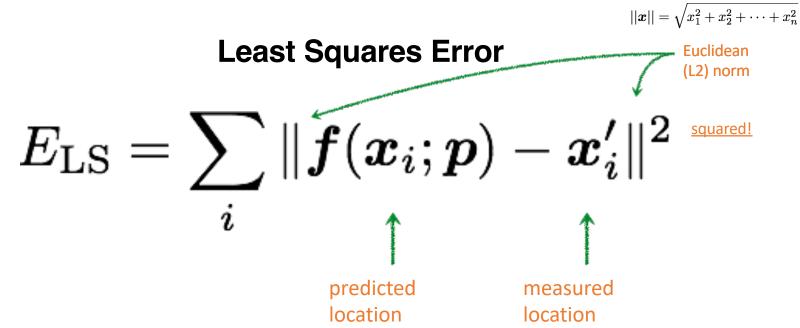
Least Squares Error

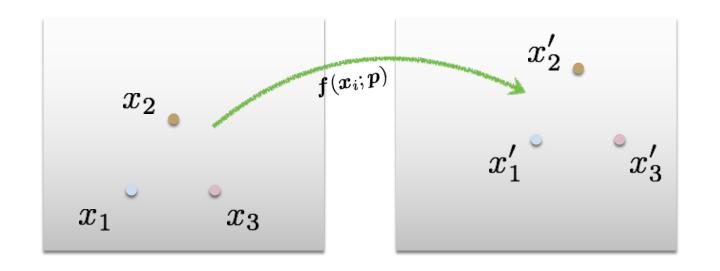
$$E_{\mathrm{LS}} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i' \|^2$$





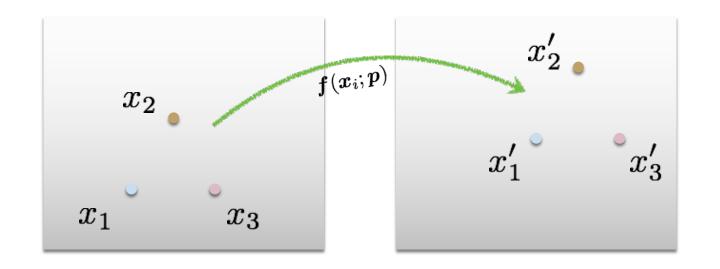






Least Squares Error

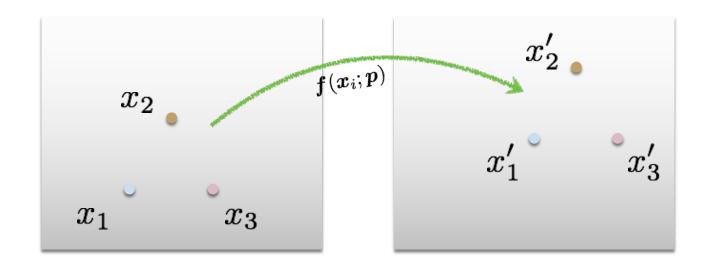
$$E_{ ext{LS}} = \sum_{i} \| oldsymbol{f}(oldsymbol{x}_i; oldsymbol{p}) - oldsymbol{x}_i' \|^2$$
Residual (projection error)



Least Squares Error

$$E_{\mathrm{LS}} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i' \|^2$$

What do we want to optimize?



Find parameters that minimize squared error

$$\hat{oldsymbol{p}} = rg \min_{oldsymbol{p}} \sum_i \|oldsymbol{f}(oldsymbol{x}_i; oldsymbol{p}) - oldsymbol{x}_i'\|^2$$

General form of linear least squares

(**Warning:** change of notation. x is a vector of parameters!)

$$E_{ ext{LLS}} = \sum_{i} |oldsymbol{a}_i oldsymbol{x} - oldsymbol{b}_i|^2 \ = \|oldsymbol{A} oldsymbol{x} - oldsymbol{b}\|^2 \quad ext{ (matrix form)}$$

Affine transformation:

$$\left[\begin{array}{c} x' \\ y' \end{array}\right] = \left[\begin{array}{ccc} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \end{array}\right] \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$
 Why can we drop the last line?

Vectorize transformation parameters:

Stack equations from point correspondences:

$$\begin{bmatrix} x' \\ y' \\ x' \\ y' \end{bmatrix} = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \\ x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \\ p_6 \end{bmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix}$$

Notation in system form:

General form of linear least squares

(**Warning:** change of notation. x is a vector of parameters!)

$$E_{ ext{LLS}} = \sum_i |oldsymbol{a}_i oldsymbol{x} - oldsymbol{b}_i|^2 \ = \|oldsymbol{A} oldsymbol{x} - oldsymbol{b}\|^2 \quad ext{ (matrix form)}$$

This function is quadratic.

How do you find the root of a quadratic?

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\mathrm{LLS}} = \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \|\boldsymbol{b}\|^{2}$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})oldsymbol{x} = \mathbf{A}^{ op}oldsymbol{b}$$

Solve for x
$$oldsymbol{x} = (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op} b$$
 $loop{}\leftarrow$

In Python:

Note: You almost <u>never</u> want to compute the inverse of a matrix.

Linear least squares estimation only works when the transform function is?

