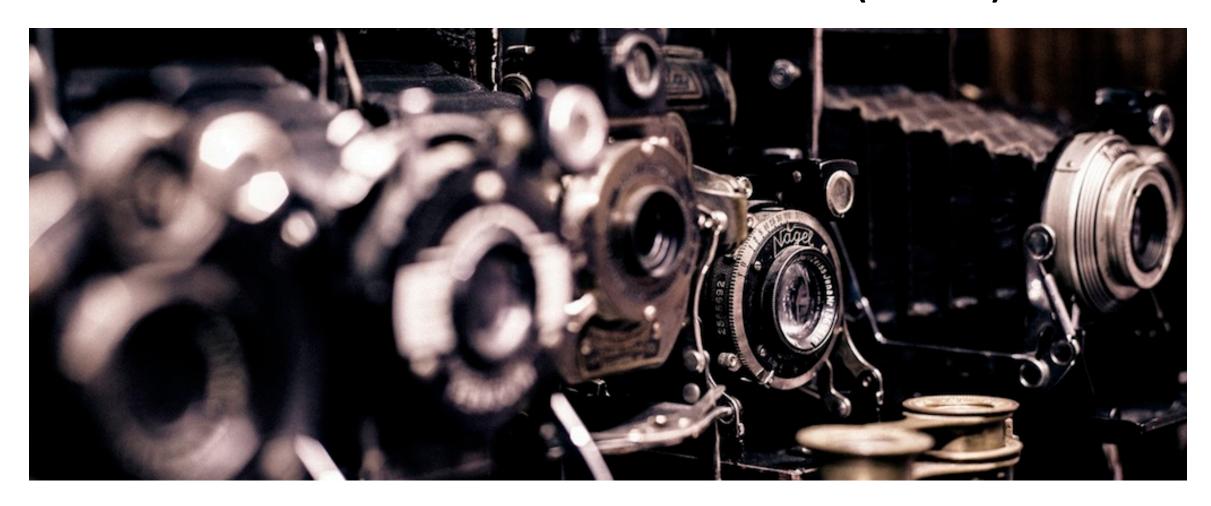
Geometric camera models (cont.)



16-385 Computer Vision Spring 2021, Lecture 10

Overview of today's lecture

- Review of camera matrix.
- Perspective.
- Other camera models.
- Pose estimation.

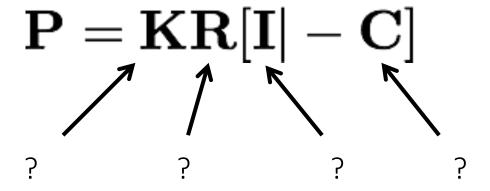
Slide credits

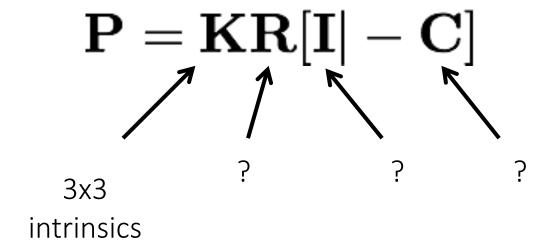
Most of these slides were adapted from:

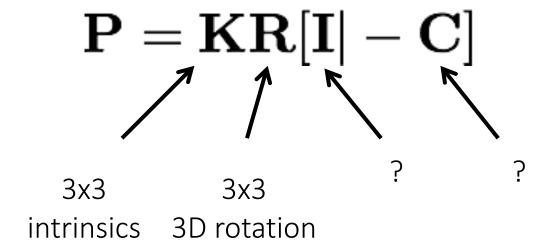
Kris Kitani (15-463, Fall 2016).

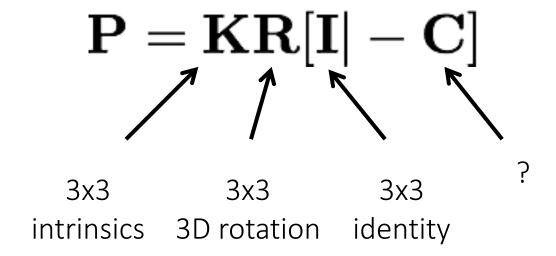
Some slides inspired from:

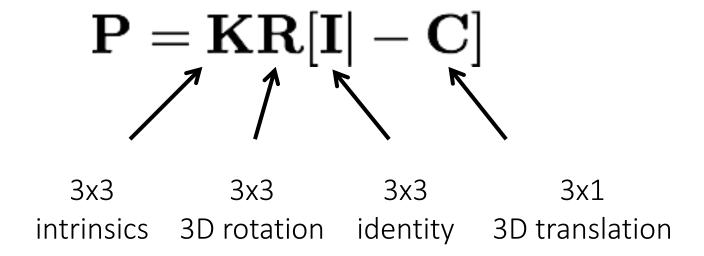
• Fredo Durand (MIT).











Perspective distortion

Finite projective camera

$$\mathbf{P} = \left[egin{array}{cccc} lpha_x & s & p_x \ 0 & lpha_y & p_y \ 0 & 0 & 1 \end{array}
ight] \,\, \left[\mathbf{R} \,\, \left|\, -\mathbf{RC} \,
ight]$$

What does this matrix look like if the camera and world have the same coordinate system?

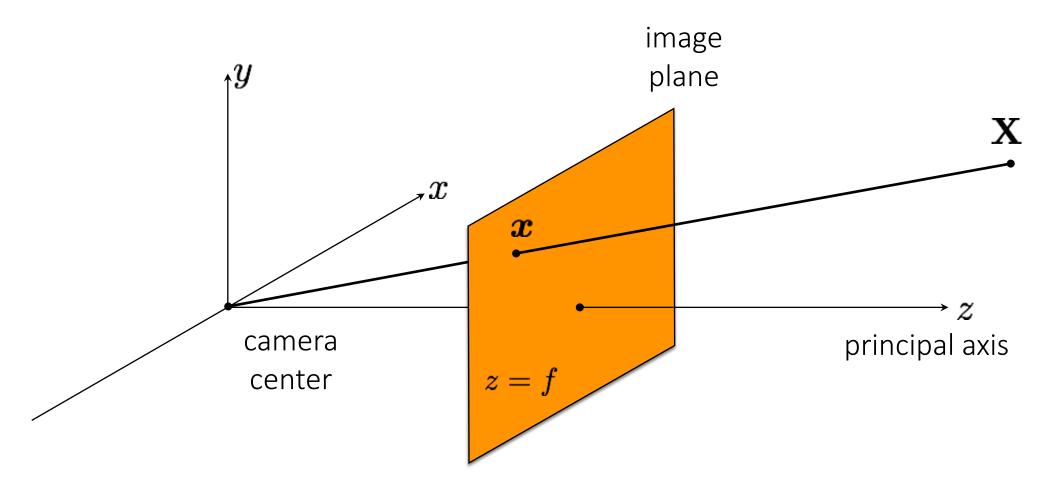
Finite projective camera

The pinhole camera and all of the more general cameras we have seen so far have "perspective distortion".

$$\mathbf{P} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Perspective projection from (homogeneous) 3D to 2D coordinates

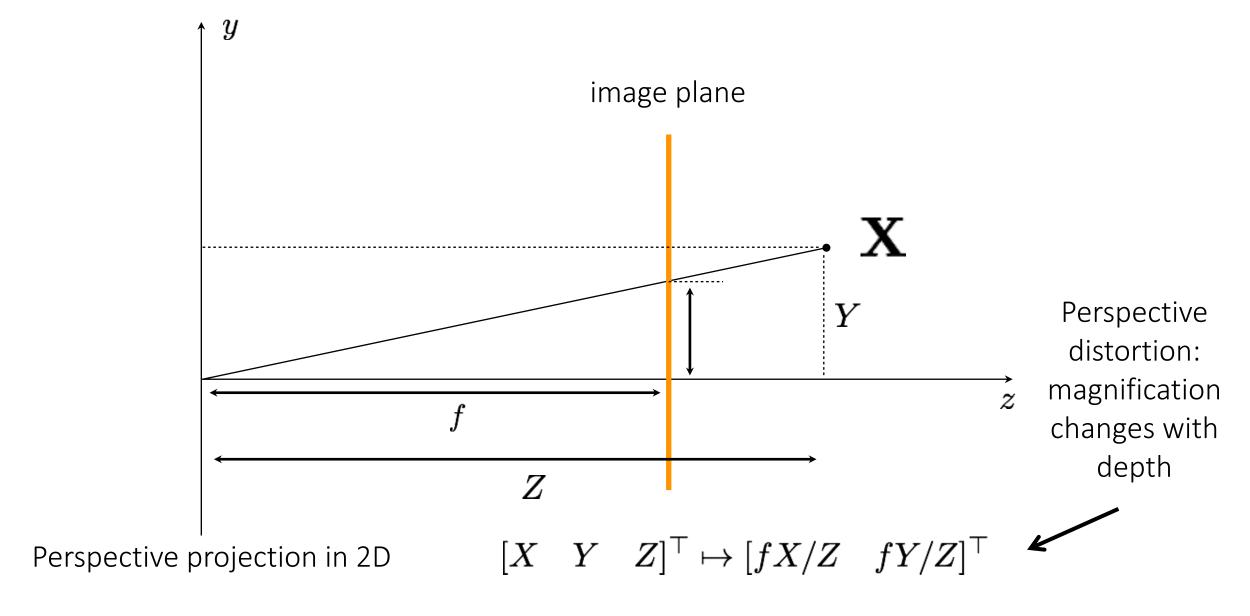
The (rearranged) pinhole camera



Perspective projection in 3D

$$x = PX$$

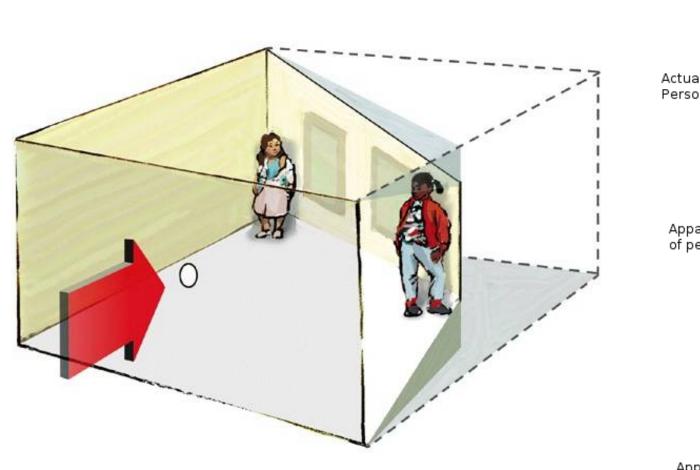
The 2D view of the (rearranged) pinhole camera

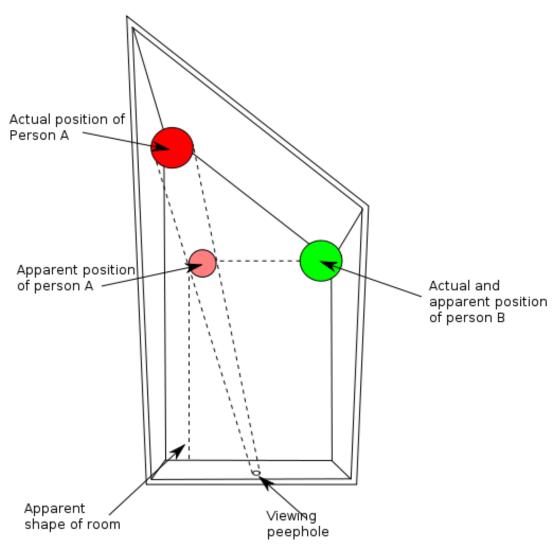


Forced perspective

The Ames room illusion

The Ames room illusion

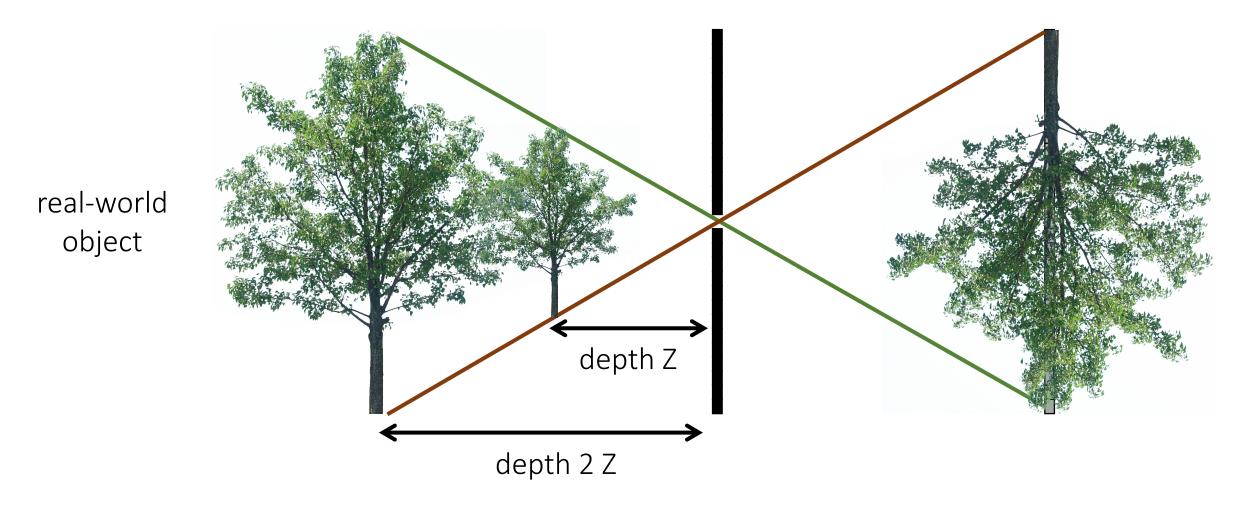




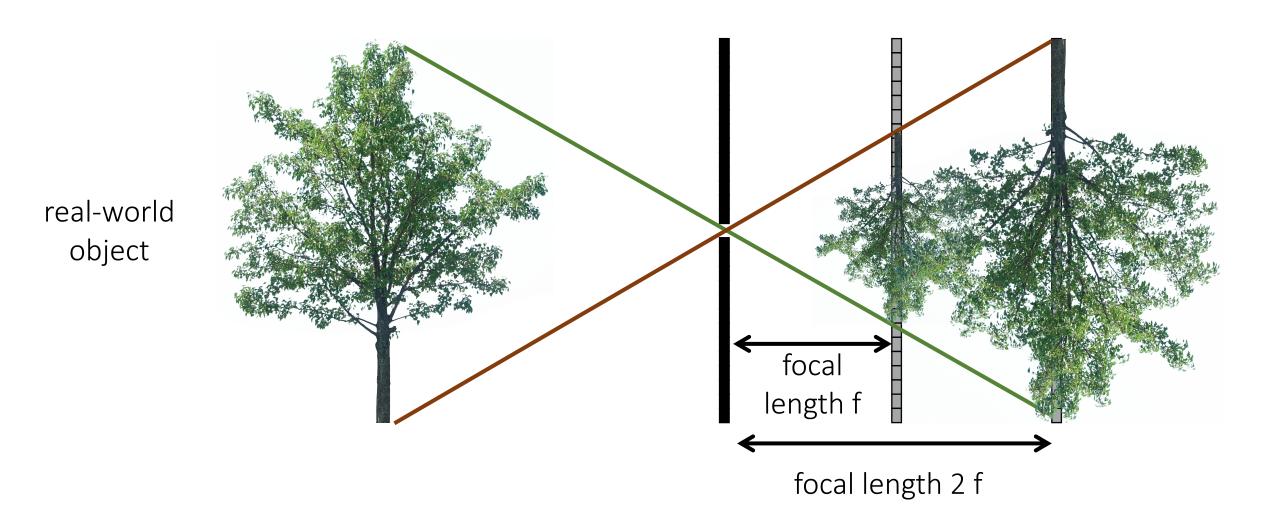
The arrow illusion

Magnification depends on depth

What happens as we change the focal length?



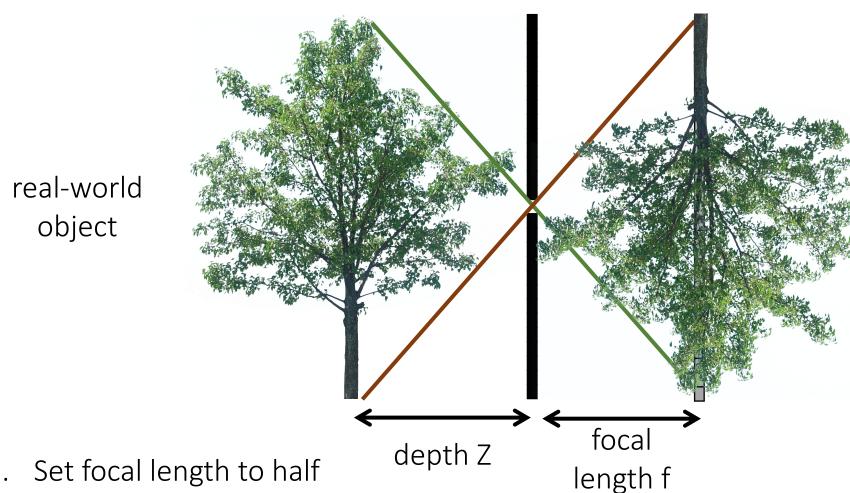
Magnification depends on focal length



What if...



What if...



Is this the same image as the one I had at focal length 2f and distance 2Z?

- Set depth to half

Perspective distortion

long focal length

mid focal length

short focal length

Perspective distortion

Vertigo effect

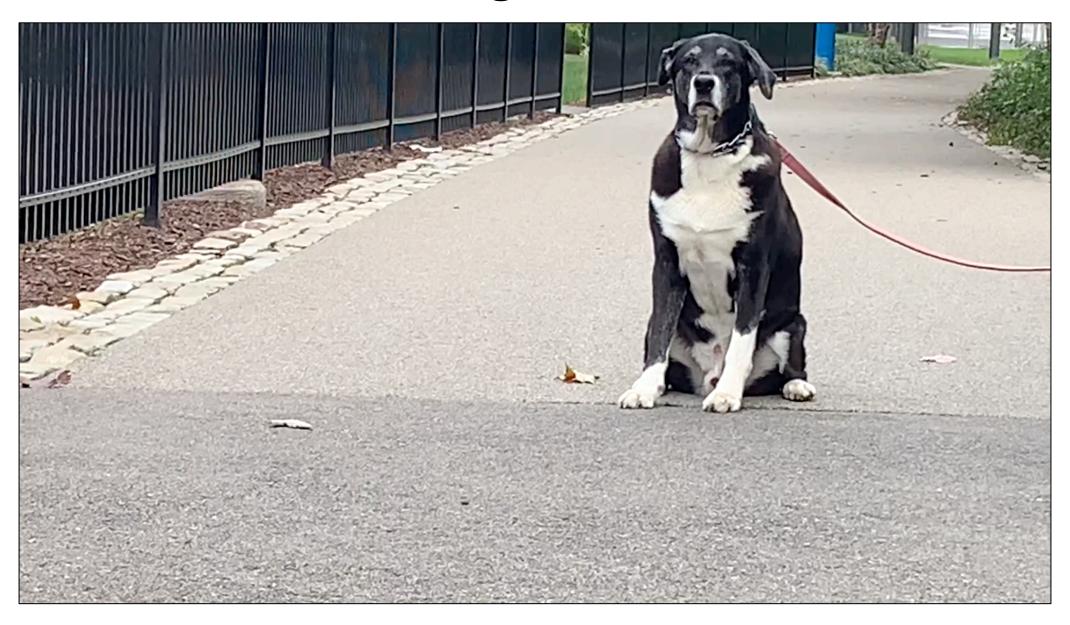
Named after Alfred Hitchcock's movie

also known as "dolly zoom"

Vertigo effect

How would you create this effect?

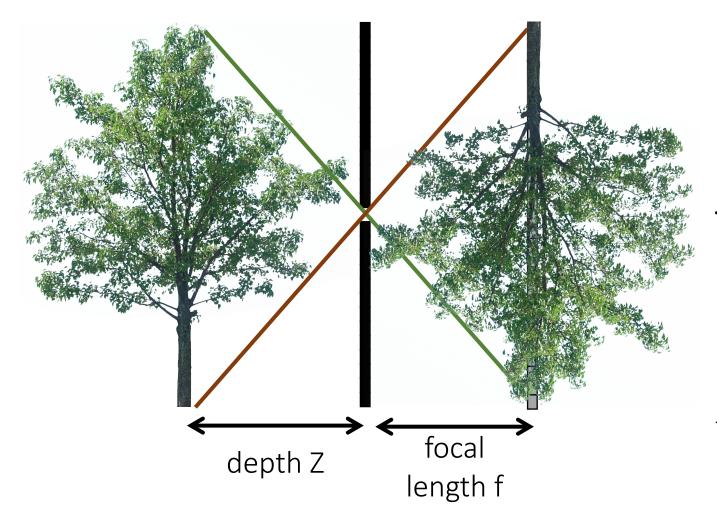
Vertigo effect



Other camera models

What if...

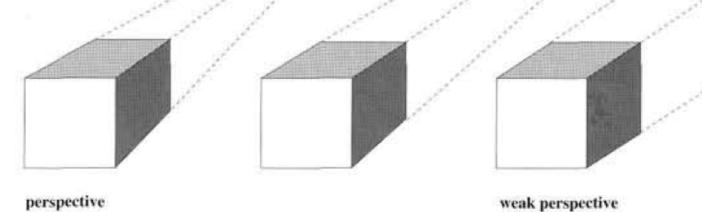
real-world object



... we continue increasing Z and f while maintaining same magnification?

$$f \to \infty$$
 and $\frac{f}{Z} = \text{constant}$

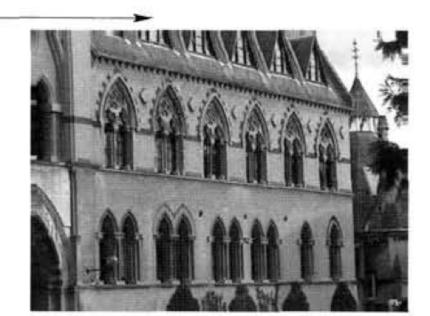
camera is *close* to object and has *small* focal length



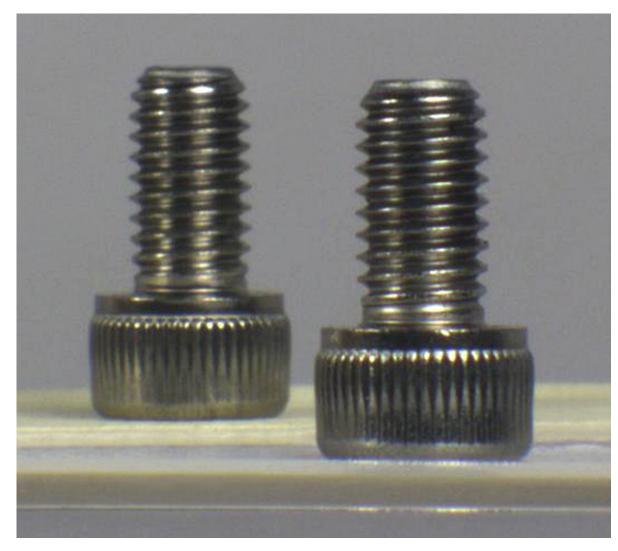
camera is *far* from object and has *large* focal length

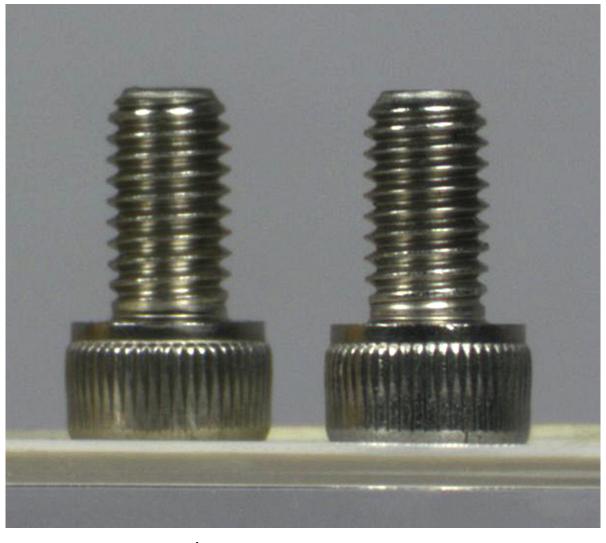
increasing focal length

increasing distance from camera



Different cameras

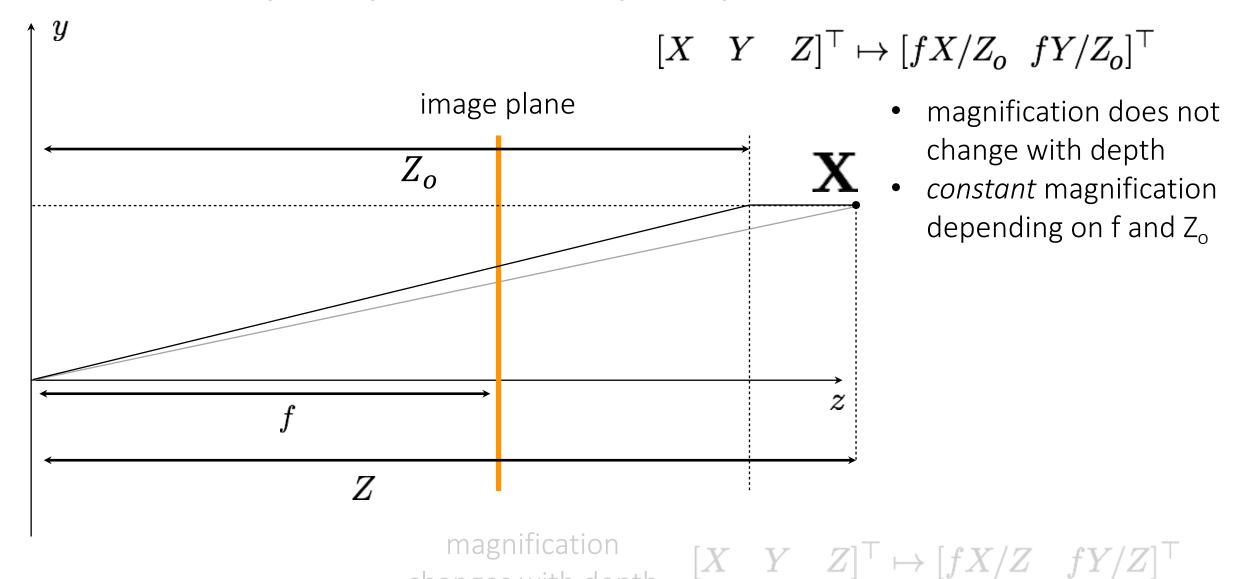




perspective camera

weak perspective camera

Weak perspective vs perspective camera



changes with depth

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

• The *perspective* camera matrix can be written as:

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

What would the matrix of the weak perspective camera look like?

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

The perspective camera matrix can be written as:

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

• The weak perspective camera matrix can be written as:

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & Z_o \end{array}
ight]$$

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

The *finite projective* camera matrix can be written as:

• The *affine* camera matrix can be written as:

x can be written as:
$$\mathbf{K} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z_o \end{bmatrix}$$

$$\mathbf{K} = \left[egin{array}{cccc} lpha_x & s & p_x \ 0 & lpha_y & p_y \ 0 & 0 & 1 \end{array}
ight]$$

In both cameras, we can incorporate extrinsic parameters same as we did before.

When can we assume a weak perspective camera?

When can we assume a weak perspective camera?

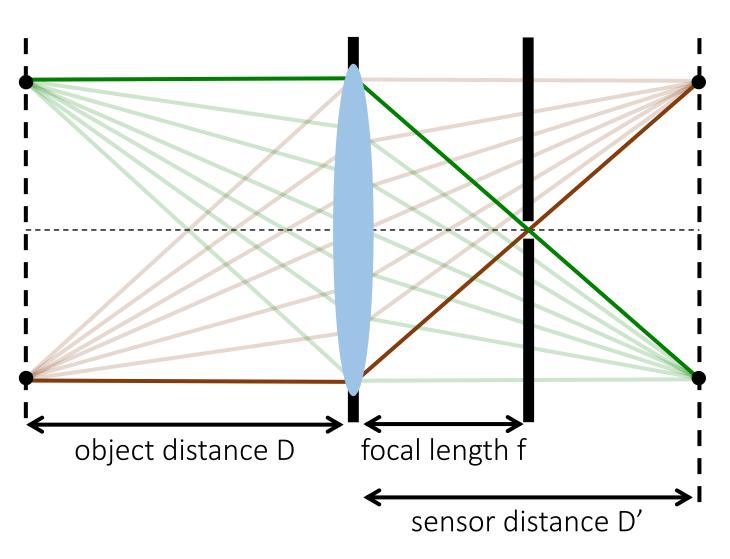
1. When the scene (or parts of it) is very far away.

Weak perspective projection applies to the mountains.

When can we assume a weak perspective camera?

2. When we use a telecentric lens.

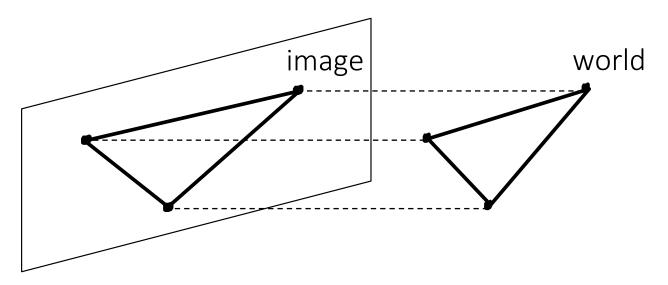
Place a pinhole at focal length, so that only rays parallel to primary ray pass through.



Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1.
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

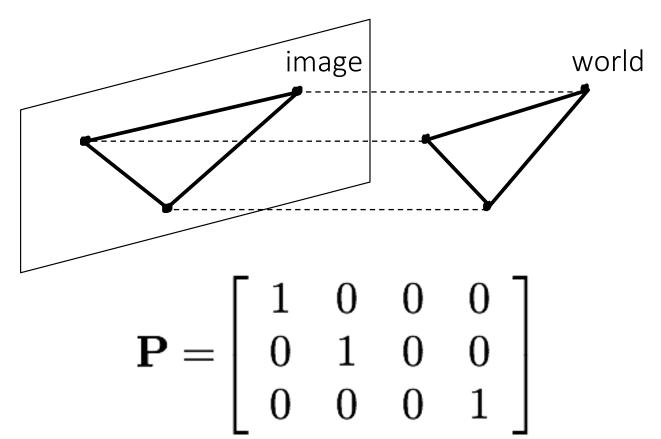


What is the camera matrix in this case?

Orthographic camera

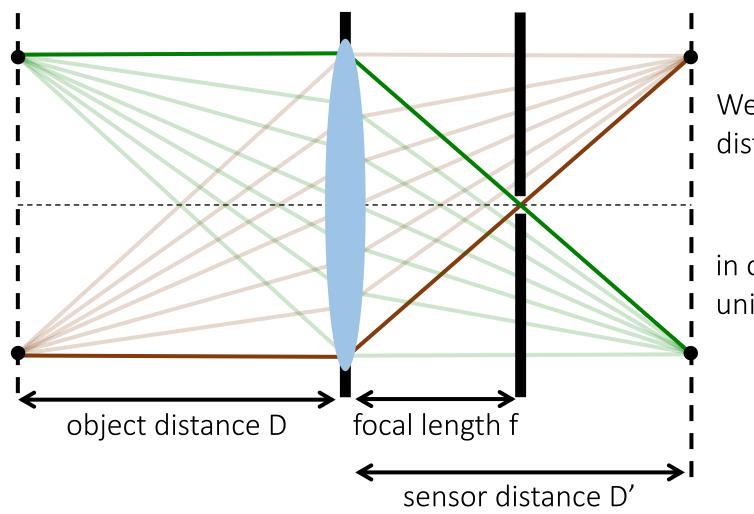
Special case of weak perspective camera where:

- constant magnification is equal to 1.
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.



Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?



We set the sensor distance as:

$$D'=2f$$

in order to achieve unit magnification.

Geometric camera calibration

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Camera Calibration (a.k.a. Pose Estimation)	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Pose Estimation

Given a single image, estimate the exact position of the photographer

Geometric camera calibration

Given a set of matched points

$$\{\mathbf{X}_i, oldsymbol{x}_i\}$$
 point in 3D point in the

and camera model

space

image

$$oldsymbol{x} = oldsymbol{f(X;p)} = oldsymbol{PX}$$

projection parameters parameters model parameters matrix

Find the (pose) estimate of

We'll use a **perspective** camera model for pose estimation

Same setup as homography estimation

(slightly different derivation here)

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What are the unknowns?

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = \left[egin{array}{ccc} - & oldsymbol{p}_1^ op & -- \ -- & oldsymbol{p}_2^ op & -- \ -- & oldsymbol{p}_3^ op & -- \end{array}
ight] \left[egin{array}{c} x \ X \ | \end{array}
ight]$$

Heterogeneous coordinates

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

(non-linear relation between coordinates)

How can we make these relations linear?

How can we make these relations linear?

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

Make them linear with algebraic manipulation...

$$\boldsymbol{p}_2^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} y' = 0$$

$$\boldsymbol{p}_1^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} x' = 0$$

Now we can setup a system of linear equations with multiple point correspondences

$$\boldsymbol{p}_2^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} y' = 0$$

$$\boldsymbol{p}_1^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} x' = 0$$

How do we proceed?

$$egin{aligned} m{p}_2^ op m{X} - m{p}_3^ op m{X} y' &= 0 \ m{p}_1^ op m{X} - m{p}_3^ op m{X} x' &= 0 \end{aligned}$$

In matrix form ...
$$\begin{bmatrix} m{X}^{ op} & m{0} & -x'm{X}^{ op} \\ m{0} & m{X}^{ op} & -y'm{X}^{ op} \end{bmatrix} \begin{bmatrix} m{p}_1 \\ m{p}_2 \\ m{p}_3 \end{bmatrix} = m{0}$$

How do we proceed?

$$egin{aligned} m{p}_2^{ op} m{X} - m{p}_3^{ op} m{X} y' &= 0 \ \ m{p}_1^{ op} m{X} - m{p}_3^{ op} m{X} x' &= 0 \end{aligned}$$

In matrix form ...
$$\begin{bmatrix} m{X}^{ op} & m{0} & -x'm{X}^{ op} \\ m{0} & m{X}^{ op} & -y'm{X}^{ op} \end{bmatrix} \begin{vmatrix} m{p}_1 \\ m{p}_2 \\ m{p}_3 \end{vmatrix} = m{0}$$

For N points ...
$$\begin{bmatrix} \boldsymbol{X}_1^\top & \boldsymbol{0} & -x'\boldsymbol{X}_1^\top \\ \boldsymbol{0} & \boldsymbol{X}_1^\top & -y'\boldsymbol{X}_1^\top \\ \vdots & \vdots & \vdots \\ \boldsymbol{X}_N^\top & \boldsymbol{0} & -x'\boldsymbol{X}_N^\top \\ \boldsymbol{0} & \boldsymbol{X}_N^\top & -y'\boldsymbol{X}_N^\top \end{bmatrix} \begin{bmatrix} \boldsymbol{p}_1 \\ \boldsymbol{p}_2 \\ \boldsymbol{p}_3 \end{bmatrix} = \boldsymbol{0}$$
How do we solve this system?

this system?

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{-x'oldsymbol{X}_N^ op} \ oldsymbol{0} & oldsymbol{X}_N^ op & -y'oldsymbol{X}_N^ op \ \end{array}
ight]$$

SVD!

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{x}_N^ op & -y'oldsymbol{X}_N^ op \ oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op \$$

Solution **x** is the column of **V** corresponding to smallest singular value of

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$$

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{x}_N^ op & -y'oldsymbol{X}_N^ op \ oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}_N^ op \ oldsymbol{x}_N^ op \$$

Equivalently, solution **x** is the Eigenvector corresponding to smallest Eigenvalue of

$$\mathbf{A}^{ op}\mathbf{A}$$

Now we have:
$$\mathbf{P} = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

Are we done?

Almost there ...
$$\mathbf{P} = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

How do you get the intrinsic and extrinsic parameters from the projection matrix?

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

P = K[R|t]

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$
 $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$ $= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$

 $= [\mathbf{M}| - \mathbf{Mc}]$

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$$

$$= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$$

Find the camera center **C**

What is the projection of the camera center?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$$

$$= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$$

Find the camera center **C**

$$\mathbf{Pc} = \mathbf{0}$$

How do we compute the camera center from this?

Find intrinsic K and rotation R

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$$

$$= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$$

Find the camera center **C**

$$\mathbf{Pc} = \mathbf{0}$$

SVD of P!

c is the singular vector corresponding to the smallest singular value

Find intrinsic K and rotation R

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$$

$$= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$$

Find the camera center **C**

$$\mathbf{Pc} = \mathbf{0}$$

SVD of P!

c is the singular vector corresponding to the smallest singular value

Find intrinsic K and rotation R

$$M = KR$$

Any useful properties of K and R we can use?

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$$

$$= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$$

Find the camera center C

$$\mathbf{Pc} = \mathbf{0}$$

SVD of P!

c is the singular vector corresponding to the smallest singular value

Find intrinsic **K** and rotation **R**

How do we find K and R?

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$$

$$= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$$

Find the camera center C

$$\mathbf{Pc} = \mathbf{0}$$

SVD of P!

c is the singular vector corresponding to the smallest singular value

Find intrinsic K and rotation R

$$M = KR$$

QR decomposition

Geometric camera calibration

Given a set of matched points

$$\{\mathbf{X}_i, oldsymbol{x}_i\}$$
 point in 3D point in the

image

Where do we get these matched points from?

and camera model

space

$$oldsymbol{x} = oldsymbol{f(X;p)} = oldsymbol{PX}$$
projection parameters Camera matrix

Find the (pose) estimate of

We'll use a **perspective** camera model for pose estimation

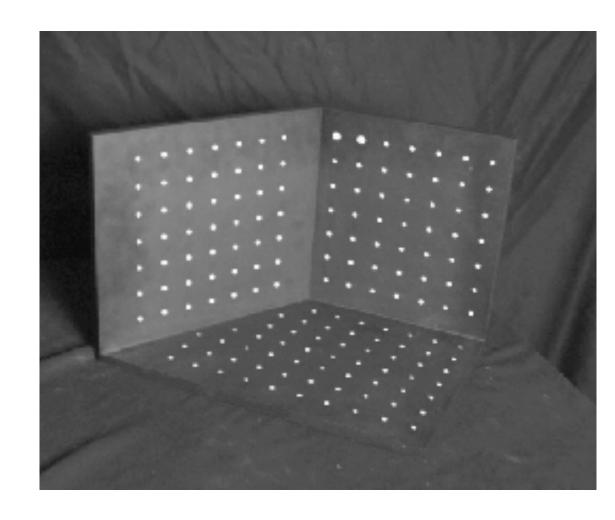
Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence



Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

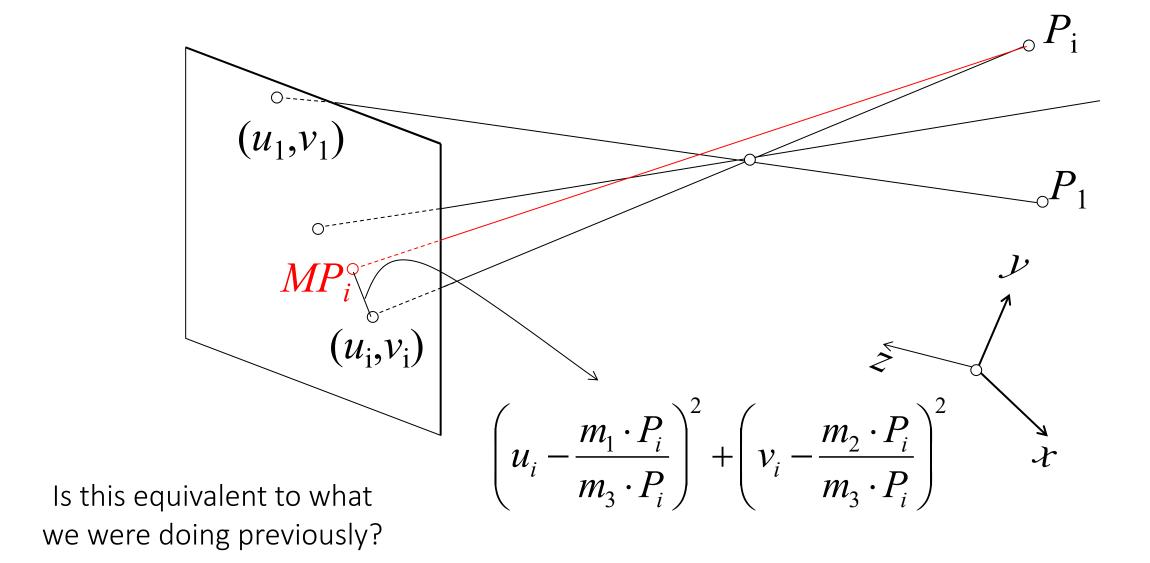
Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known *f*).
- Doesn't minimize the correct error function.

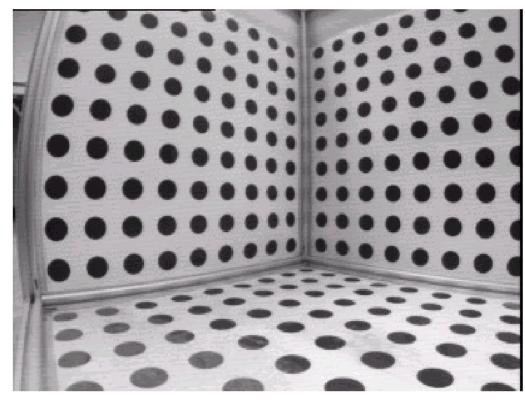
For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
 - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

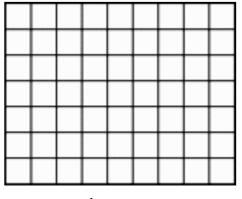
Minimizing reprojection error



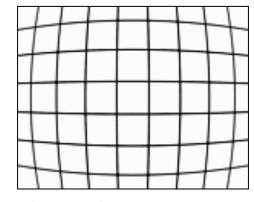
Radial distortion

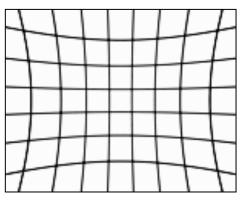


What causes this distortion?



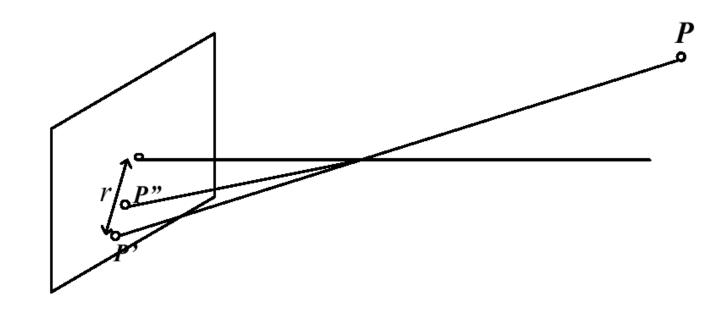
no distortion





barrel distortion pincushion distortion

Radial distortion model



Ideal:

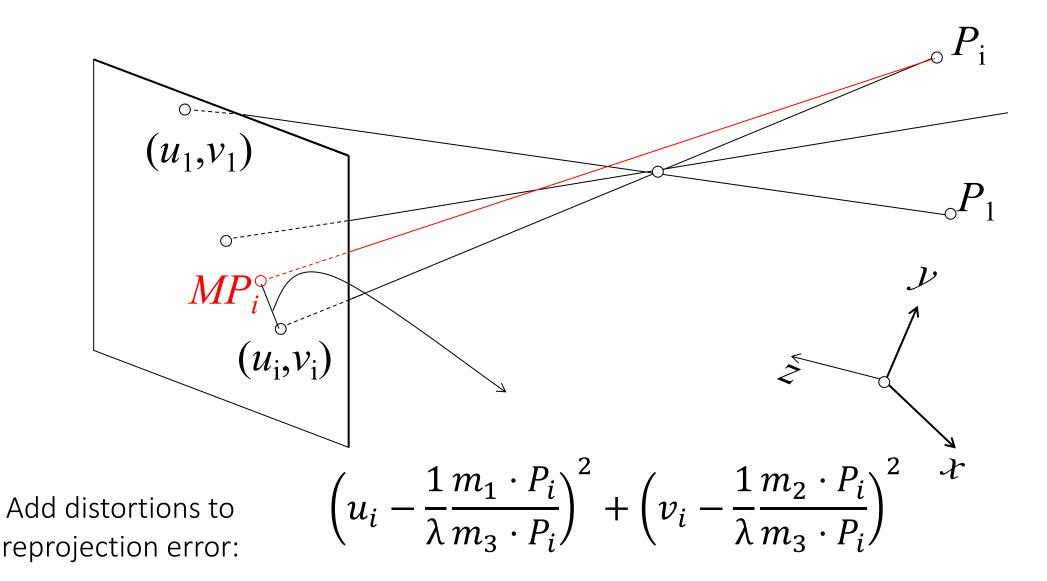
Distorted:

$$x'=f\frac{x}{z} \qquad x''=\frac{1}{\lambda}x'$$

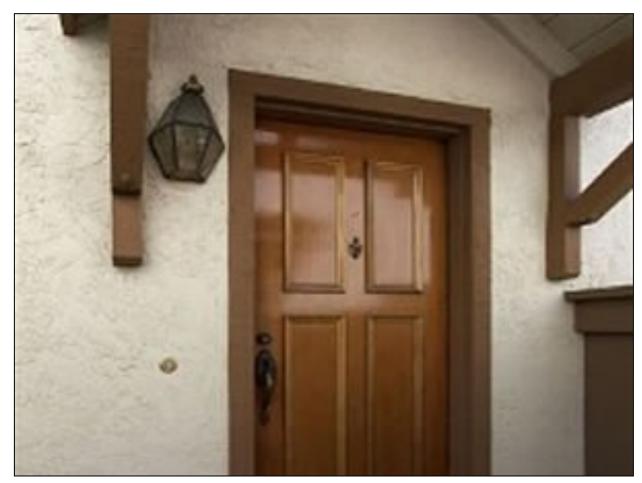
$$y'=f\frac{y}{z} \qquad y''=\frac{1}{\lambda}y'$$

$$\lambda=1+k_1r^2+k_2r^4+\cdots$$

Minimizing reprojection error with radial distortion

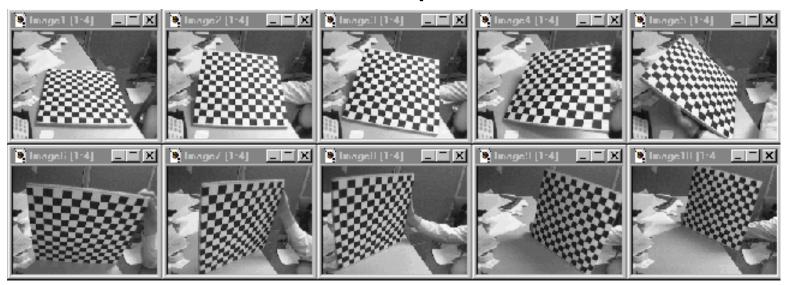


Correcting radial distortion



before after

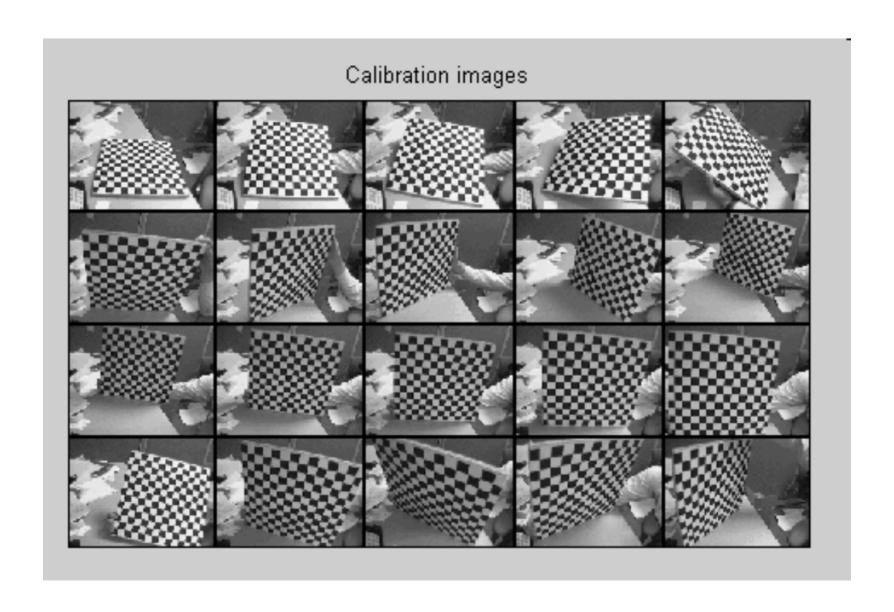
Alternative: Multi-plane calibration

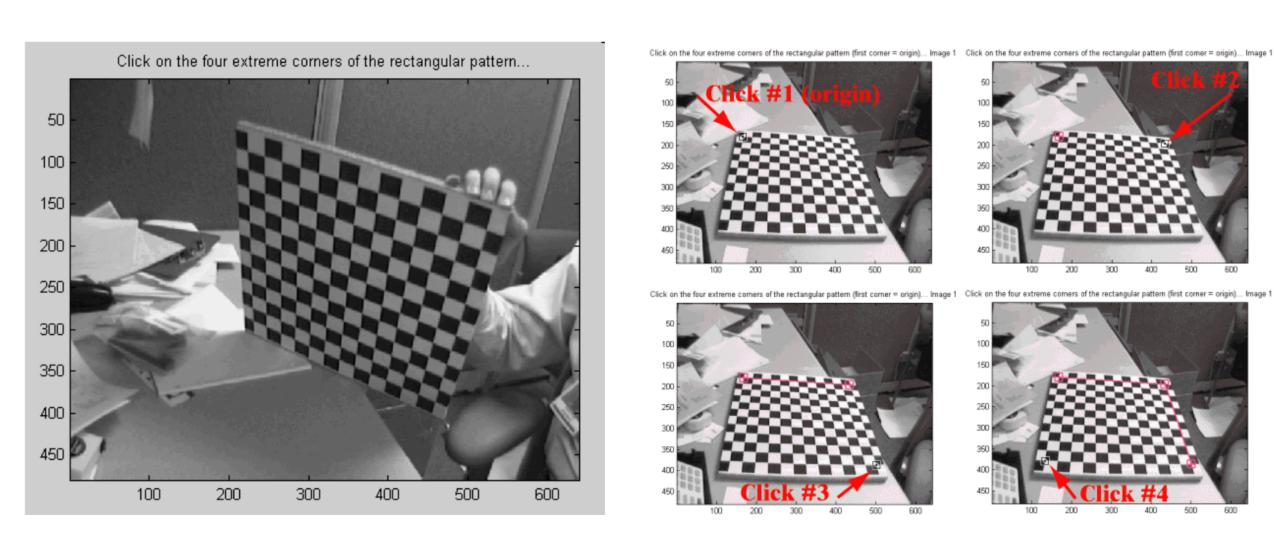


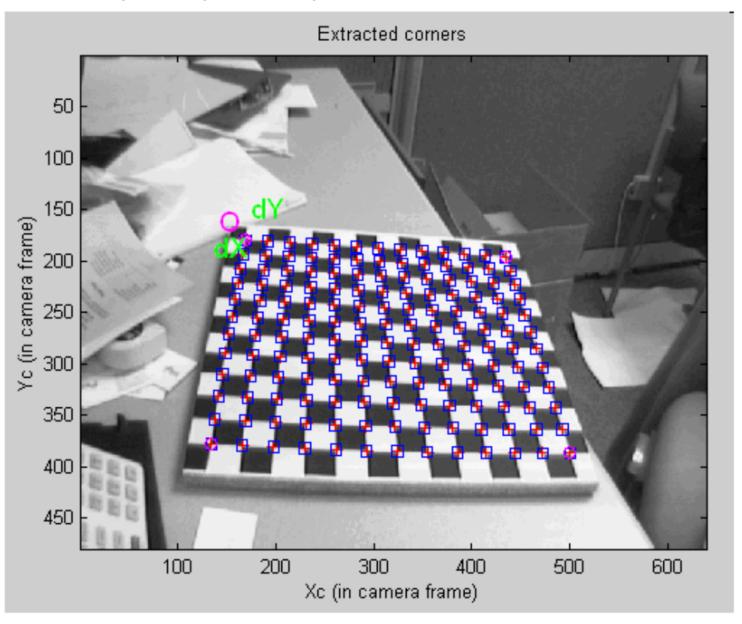
Advantages:

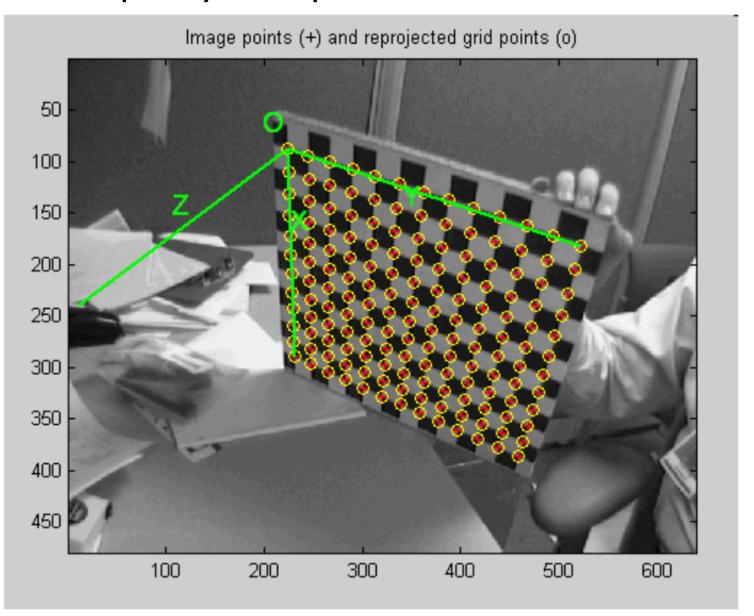
- Only requires a plane
- Don't have to know positions/orientations
- Great code available online!
 - Matlab version: http://www.vision.caltech.edu/bouguetj/calib doc/index.html
 - Also available on OpenCV.

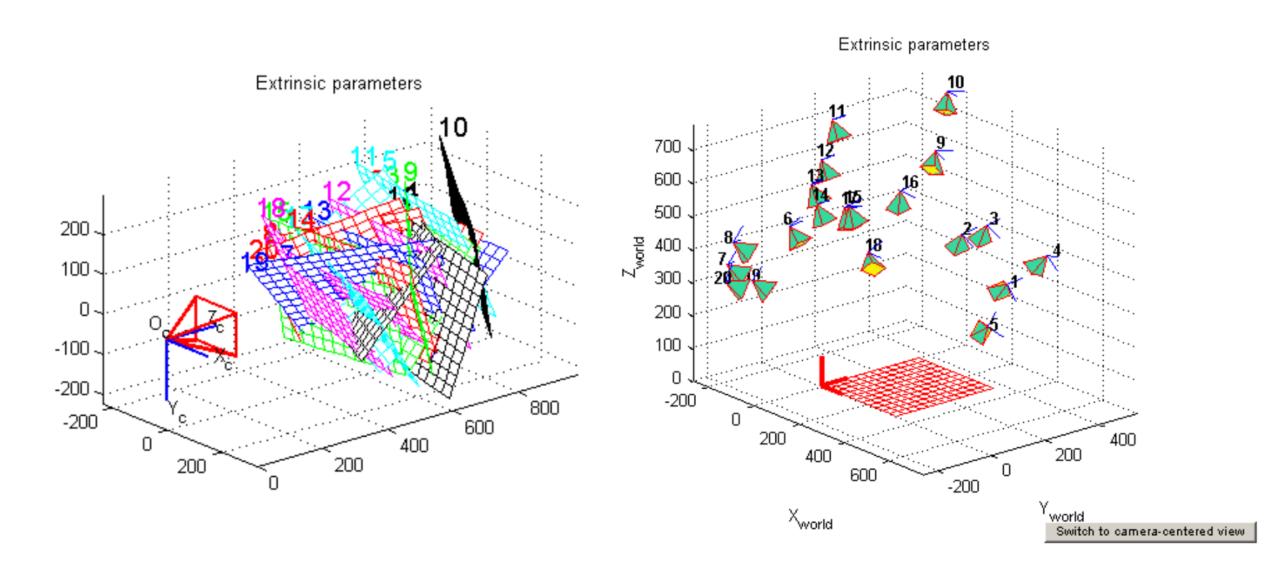
Disadvantage: Need to solve non-linear optimization problem.











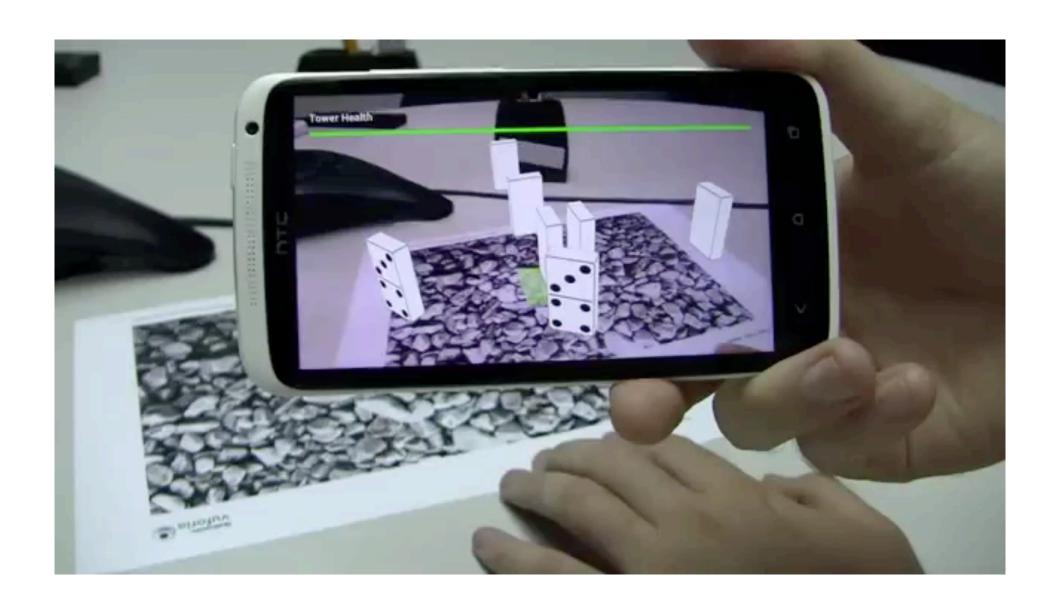
What does it mean to "calibrate a camera"?

What does it mean to "calibrate a camera"?

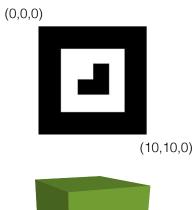
Many different ways to calibrate a camera:

- Radiometric calibration.
- Color calibration.
- Geometric calibration.
- Noise calibration.
- Lens (or aberration) calibration.

We'll briefly discuss radiometric and color calibration in later lectures. For the rest, see 15-463/663/862.



3D locations of planar marker features are known in advance



3D content prepared in advance

Simple AR program

- 1. Compute point correspondences (2D and AR tag)
- 2. Estimate the pose of the camera **P**
- 3. Project 3D content to image plane using P

