Geometric camera models (cont.)

16-385 Computer Vision http://16385.courses.cs.cmu.edu/ Spring 2021, Lecture 10

Overview of today's lecture

- Review of camera matrix.
- Perspective.
- Other camera models.
- Pose estimation.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).

Some slides inspired from:

- Fredo Durand (MIT).

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Perspective distortion

Finite projective camera

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right] \begin{gathered}
{[\mathbf{R}} \\
-\mathbf{R C}]
\end{gathered}
$$

What does this matrix look like if the camera and world have the same coordinate system?

Finite projective camera

The pinhole camera and all of the more general cameras we have seen so far have "perspective distortion".

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Perspective projection from (homogeneous) 3D to 2D coordinates

The (rearranged) pinhole camera

$$
\boldsymbol{x}=\mathbf{P X}
$$

The 2D view of the (rearranged) pinhole camera

Perspective distortion: magnification changes with
depth

Perspective projection in 2D
$\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}f X / Z & f Y / Z\end{array}\right]^{\top}$

Forced perspective

The Ames room illusion

The Ames room illusion

The arrow illusion

Magnification depends on depth

What happens as we change the focal length?
real-world
object

Magnification depends on focal length

What if...

What if...

Perspective distortion

long focal length

mid focal length

short focal length

Perspective distortion

Vertigo effect

Named after Alfred Hitchcock's movie

- also known as "dolly zoom"

Vertigo effect

How would you create this effect?

Vertigo effect

Other camera models

What if...

camera is close to object and has small focal length

perspective
perspective

weak perspective
camera is far from object and has large focal length
increasing focal length

Different cameras

perspective camera
weak perspective camera

Weak perspective vs perspective camera

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{llc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- What would the matrix of the weak perspective camera look like?

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- The weak perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]
$$

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The finite projective camera matrix can be written as:

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

where we now have the more general intrinsic matrix

- The affine camera matrix can be written as:

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]
$$

$$
\mathbf{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

In both cameras, we can incorporate extrinsic parameters same as we did before.

When can we assume a weak perspective camera?

When can we assume a weak perspective camera?

1. When the scene (or parts of it) is very far away.

Weak perspective projection applies to the mountains.

When can we assume a weak perspective camera?

2. When we use a telecentric lens.

Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1 .
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

What is the camera matrix in this case?

Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1 .
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

Geometric camera calibration

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Camera Calibration (a.k.a. Pose Estimation)	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Pose Estimation

Given a single image,
estimate the exact position of the photographer

Geometric camera calibration

Given a set of matched points
$\left\{\mathbf{X}_{i}, \boldsymbol{x}_{i}\right\}$

$$
\begin{array}{cc}
\text { point in 3D } & \text { point in the } \\
\text { space } & \text { image }
\end{array}
$$

and camera model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

Same setup as homography estimation

(slightly different derivation here)

Mapping between 3D point and image points

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What are the unknowns?

Mapping between 3D point and image points

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ll}
- & \boldsymbol{p}_{1}^{\top}- \\
- & \boldsymbol{p}_{2}^{\top}- \\
- & \boldsymbol{p}_{3}^{\top}-
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{X} \\
\mid
\end{array}\right]}
\end{aligned}
$$

Heterogeneous coordinates

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

(non-linear relation between coordinates)
How can we make these relations linear?

How can we make these relations linear?

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

Make them linear with algebraic manipulation...

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

Now we can setup a system of linear equations with multiple point correspondences

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

How do we proceed?

$$
\begin{gathered}
\boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0 \\
\text { In matrix form } \ldots\left[\begin{array}{ccc}
\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\
\mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]=\mathbf{0}
\end{gathered}
$$

How do we proceed?

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

In matrix form $\ldots\left[\begin{array}{ccc}\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\ \mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}\end{array}\right]\left[\begin{array}{l}\boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \boldsymbol{p}_{3}\end{array}\right]=\mathbf{0}$

For N points ...

$$
\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]=\mathbf{0} \begin{aligned}
& \text { How do we solve } \\
& \begin{array}{l}
\text { this system? }
\end{array}
\end{aligned}
$$

Solve for camera matrix by

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

Solve for camera matrix by

$$
\begin{aligned}
& \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
& \mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right]
\end{aligned}
$$

Solution \mathbf{x} is the column of \mathbf{V} corresponding to smallest singular
value of
$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

Solve for camera matrix by

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

Equivalently, solution \boldsymbol{x} is the
Eigenvector corresponding to smallest Eigenvalue of
$\mathbf{A}^{\top} \mathbf{A}$

Now we have: $\quad \mathbf{P}=\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12}\end{array}\right]$

Are we done?

Almost there $\ldots \quad \mathbf{P}=\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12}\end{array}\right]$
How do you get the intrinsic and extrinsic parameters from the projection matrix?

Decomposition of the Camera Matrix

$$
\mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
\mathbf{P}= & {\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] } \\
& \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}

$$
\mathrm{Pc}=\mathbf{0}
$$

SVD of P!
c is the singular vector corresponding to the smallest singular value

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

Any useful properties of K and R we can use?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}

$$
\mathbf{P c}=\mathbf{0}
$$

SVD of P!
c is the singular vector corresponding to the smallest singular value

Find intrinsic \mathbf{K} and rotation \mathbf{R}

How do we find K and R ?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}
$\mathbf{P c}=\mathbf{0}$
SVD of P!
c is the singular vector corresponding to the smallest singular value

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

QR decomposition

Geometric camera calibration

Given a set of matched points
$\left\{\mathbf{X}_{i}, \boldsymbol{x}_{i}\right\}$
point in 3D point in the space
and camera model

Find the (pose) estimate of
We'll use a perspective camera model for pose estimation

Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence

Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known f).
- Doesn't minimize the correct error function.

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
- E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

Minimizing reprojection error

Radial distortion

What causes this distortion?

no distortion

barrel distortion

pincushion distortion

Radial distortion model

Ideal:
Distorted:

$$
\begin{array}{ll}
x^{\prime}=f \frac{x}{z} & x^{\prime \prime}=\frac{1}{\lambda} x, \\
y^{\prime}=f \frac{y}{z} & y^{\prime \prime}=\frac{1}{\lambda} y^{\prime}
\end{array}
$$

Minimizing reprojection error with radial distortion

Correcting radial distortion

Alternative: Multi-plane calibration

Advantages:

- Only requires a plane
- Don't have to know positions/orientations
- Great code available online!
- Matlab version: http://www.vision.caltech.edu/bouguetj/calib doc/index.html
- Also available on OpenCV.

Disadvantage: Need to solve non-linear optimization problem.

Step-by-step demonstration

Calibration images

Step-by-step demonstration

Click on the four extreme corners of the rectangular pattern.

Cick on the four extreme cormers of the rectangular patten (frst comer $=$ origin)... Image 1

Step-by-step demonstration

Step-by-step demonstration

Step-by-step demonstration

Extrinsic parameters

What does it mean to "calibrate a camera"?

What does it mean to "calibrate a camera"?

Many different ways to calibrate a camera:

- Radiometric calibration.
- Color calibration.
- Geometric calibration.

We'll briefly discuss radiometric and color calibration in later lectures. For the rest, see 15-463/663/862.

- Noise calibration.
- Lens (or aberration) calibration.

$(0,0,0)$
 3D locations of planar marker features are known in advance
 (10,10,0)
 3D content prepared in advance

Simple AR program

1. Compute point correspondences (2D and AR tag)
2. Estimate the pose of the camera \mathbf{P}
3. Project 3D content to image plane using \mathbf{P}

