Radiometry and reflectance

16-385 Computer Vision http://16385.courses.cs.cmu.edu/ Spring 2021, Lectures 13 \& 14

Overview of today's lecture

- Appearance phenomena.
- Measuring light and radiometry.
- Reflectance and BRDF.

Slide credits

Most of these slides were adapted from:

- Srinivasa Narasimhan (16-385, Spring 2014).
- Todd Zickler (Harvard University).
- Steven Gortler (Harvard University).

Appearance

Appearance

"Physics-based" computer vision (a.k.a "inverse optics")

Our challenge: Invent computational representations of shape, lighting, and reflectance that are efficient: simple enough to make inference tractable, yet general enough to capture the world's most important phenomena

illumination

$\mathbf{I} \Longrightarrow$ shape, illumination, reflectance

Example application: Photometric Stereo

Why study the physics (optics) of the world?

Lets see some pictures!

Light and Shadows

Reflections

Refractions

Interreflections

Scattering

More Complex Appearances

opaque

translucent

Measuring light and radiometry

Solid angle

- The solid angle subtended by a small surface patch with respect to point O is the area of its central projection onto the unit sphere about O

Depends on:

- orientation of patch
- distance of patch

Solid angle

- The solid angle subtended by a small surface patch with respect to point O is the area of its central projection onto the unit sphere about O

Depends on:

- orientation of patch
- distance of patch

One can show:

$$
d \omega=\frac{d A \cos \theta}{r^{2}}
$$

Units: steradians [sr]

Solid angle

- The solid angle subtended by a small surface patch with respect to point O is the area of its central projection onto the unit sphere about O

Depends on:

- orientation of patch
- distance of patch

One can show:
"surface foreshortening"
$d \omega=\frac{d A \cos \theta}{r^{2}}$

Units: steradians [sr]

Solid angle

- To calculate solid angle subtended by a surface S relative to O you must add up (integrate) contributions from all tiny patches (nasty integral)

$\Omega=\iint_{S} \frac{\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}} d S}{|\overrightarrow{\mathbf{r}}|^{3}}$

One can show:
"surface foreshortening"
$d \omega=\frac{d A \cos \theta}{r^{2}}$

Units: steradians [sr]

Question

- Suppose surface S is a hemisphere centered at O . What is the solid angle it subtends?

Question

- Suppose surface S is a hemisphere centered at O . What is the solid angle it subtends?
- Answer: 2\pi (area of sphere is $4 \backslash p i^{*} \uparrow \wedge 2$; area of unit sphere is $4 \backslash p i$; half of that is $2 \backslash \mathrm{pi}$)

Quantifying light: flux, irradiance, and radiance

- Imagine a sensor that counts photons passing through planar patch X in directions within angular wedge W
- It measures radiant flux [watts = joules/sec]: rate of photons hitting sensor area
- Measurement depends on sensor area $|\mathrm{X}|$

* shown in 2D for clarity; imagine three dimensions
radiant flux $\Phi(W, X)$

Quantifying light: flux, irradiance, and radiance

- Irradiance:

A measure of incoming light that is independent of sensor area $|X|$

- Units: watts per square meter [W/m²]

$$
\frac{\Phi(W, X)}{|X|}
$$

Quantifying light: flux, irradiance, and radiance

- Irradiance:

A measure of incoming light that is independent of sensor area $|X|$

- Units: watts per square meter [W/m²]

$$
\frac{\Phi(W, X)}{|X|}
$$

Quantifying light: flux, irradiance, and radiance

- Irradiance:

A measure of incoming light that is independent of sensor area $|\mathrm{X}|$

- Units: watts per square meter [W/m²]
- Depends on sensor direction normal.

$\frac{\Phi(W, X)}{|X|}$
W
$\lim _{X \longrightarrow x}$

$$
E_{\hat{\mathbf{n}}}(W, x)
$$

[^0]
Quantifying light: flux, irradiance, and radiance

- Radiance:

A measure of incoming light that is independent of sensor area $|\mathrm{X}|$, orientation n, and wedge size (solid angle) |W|

- Units: watts per steradian per square meter [W/(m².sr)]

$E_{\hat{\mathbf{n}}}(W, x)$

$$
L_{\hat{\mathbf{n}}}(\hat{\boldsymbol{\omega}}, x)
$$

Quantifying light: flux, irradiance, and radiance

- Radiance:

A measure of incoming light that is independent of sensor area $|\mathrm{X}|$, orientation n, and wedge size (solid angle) |W|

- Units: watts per steradian per square meter [W/(m².sr)]

$E_{\hat{\mathbf{n}}}(W, x)$

$$
L_{\hat{\mathbf{n}}}(\hat{\boldsymbol{\omega}}, x)
$$

Quantifying light: flux, irradiance, and radiance

- Radiance:

A measure of incoming light that is independent of sensor area $|\mathrm{X}|$, orientation n, and wedge size (solid angle) |W|

- Units: watts per steradian per square meter [W/(m².sr)]

Quantifying light: flux, irradiance, and radiance

- Radiance:

A measure of incoming light that is independent of sensor area $|\mathrm{X}|$, orientation n, and wedge size (solid angle) |W|

- Units: watts per steradian per square meter $\left[\mathrm{K} /\left(\mathrm{m}^{2} \cdot \mathrm{sr}\right)\right]$
"foreshortened in the
W direction of travel"

$\underline{E_{\hat{\mathbf{n}}}(W, x)}$

$$
L_{\hat{\mathbf{n}}}(\hat{\boldsymbol{\omega}}, x)
$$

$L(\hat{\boldsymbol{\omega}}, x)$

Quantifying light: flux, irradiance, and radiance

- Attractive properties of radiance:
- Allows computing the radiant flux measured by any finite sensor

Quantifying light: flux, irradiance, and radiance

- Attractive properties of radiance:
- Allows computing the radiant flux measured by any finite sensor

$$
\Phi(W, X)=\int_{X} \int_{W} L(\hat{\boldsymbol{\omega}}, x) \cos \theta d \boldsymbol{\omega} d A
$$

Quantifying light: flux, irradiance, and radiance

- Attractive properties of radiance:
- Allows computing the radiant flux measured by any finite sensor

$$
\Phi(W, X)=\int_{X} \int_{W} L(\hat{\boldsymbol{\omega}}, x) \cos \theta d \boldsymbol{\omega} d A
$$

- Constant along a ray in free space

$$
L(\hat{\boldsymbol{\omega}}, x)=L(\hat{\boldsymbol{\omega}}, x+\hat{\boldsymbol{\omega}})
$$

Quantifying light: flux, irradiance, and radiance

- Attractive properties of radiance:
- Allows computing the radiant flux measured by any finite sensor

$$
\Phi(W, X)=\int_{X} \int_{W} L(\hat{\boldsymbol{\omega}}, x) \cos \theta d \boldsymbol{\omega} d A
$$

- Constant along a ray in free space

$$
L(\hat{\boldsymbol{\omega}}, x)=L(\hat{\boldsymbol{\omega}}, x+\hat{\boldsymbol{\omega}})
$$

- A camera measures radiance (after a one-time radiometric calibration). So RAW pixel values are proportional to radiance.
- "Processed" images (like PNG and JPEG) are not linear radiance measurements!!

Question

- Most light sources, like a heated metal sheet, follow Lambert's Law

- What is the radiance $L(\hat{\boldsymbol{\omega}}, \boldsymbol{x})$ of an infinitesimal patch $\left[\mathrm{W} / \mathrm{sr} \cdot \mathrm{m}^{2}\right]$?

Question

- Most light sources, like a heated metal sheet, follow Lambert's Law

$$
J(\hat{\boldsymbol{\omega}})=J_{o}\langle\hat{\boldsymbol{\omega}}, \hat{\boldsymbol{n}}\rangle=J_{o} \cos \theta
$$

radiant intensity [W/sr]
"Lambertian
area source"

- What is the radiance $L(\hat{\boldsymbol{\omega}}, \boldsymbol{x})$ of an infinitesimal patch $\left[\mathrm{W} / \mathrm{sr} \cdot \mathrm{m}^{2}\right]$?

Answer: $\quad L(\hat{\boldsymbol{\omega}}, \boldsymbol{x})=J_{o} /|X|$ (independent of direction)

Question

- Most light sources, like a heated metal sheet, follow Lambert's Law

- What is the radiance $L(\hat{\boldsymbol{\omega}}, \boldsymbol{x})$ of an infinitesimal patch $\left[\mathrm{W} / \mathrm{sr} \cdot \mathrm{m}^{2}\right]$?

Answer: $\quad L(\hat{\boldsymbol{\omega}}, \boldsymbol{x})=J_{o} /|X|$ (independent of direction)
"Looks equally bright when viewed from any direction"

Radiometric concepts - boring...but, important!

(1) Solid Angle : $d \omega=\frac{d A^{\prime}}{R^{2}}=\frac{d A \cos \theta_{i}}{R^{2}}$ (steradian)

What is the solid angle subtended by a hemisphere?
(2) Radiant Intensity of Source : $J=\frac{d \Phi}{d \omega}$ (watts / steradian)

Light Flux (power) emitted per unit solid angle
(3) Surface Irradiance : $E=\frac{d \Phi}{d A}$ (watts / m^{2})

Light Flux (power) incident per unit surface area.
Does not depend on where the light is coming from!
(4) Surface Radiance (tricky) :
$L=\frac{d^{2} \Phi}{\left(d A \cos \theta_{r}\right) d \omega}\left(\right.$ watts $/ \mathrm{m}^{2}$ steradian)

- Flux emitted per unit foreshortened area per unit solid angle.
- L depends on direction θ_{r}
- Surface can radiate into whole hemisphere.
- L depends on reflectance properties of surface.

Appearance

"Physics-based" computer vision (a.k.a "inverse optics")

illumination

$\mathbf{I} \Longrightarrow$ shape, illumination, reflectance

Reflectance and BRDF

Reflectance

- Ratio of outgoing energy to incoming energy at a single point
- Want to define a ratio such that it:
- converges as we use smaller and smaller incoming and outgoing wedges
- does not depend on the size of the wedges (i.e. is intrinsic to the material)

Reflectance

- Ratio of outgoing energy to incoming energy at a single point
- Want to define a ratio such that it:
- converges as we use smaller and smaller incoming and outgoing wedges
- does not depend on the size of the wedges (i.e. is intrinsic to the material)

$$
\lim _{W_{\mathrm{in}} \longrightarrow \hat{\boldsymbol{w}}_{\mathrm{in}}} \quad f_{x, \hat{\mathbf{n}}}\left(\hat{\boldsymbol{\omega}}_{\mathrm{in}}, \hat{\boldsymbol{\omega}}_{\mathrm{out}}\right)
$$

- Notations x and n often implied by context and omitted;
$f_{x, \hat{\mathbf{n}}}\left(W_{\text {in }}, \hat{\boldsymbol{\omega}}_{\text {out }}\right)=\frac{L^{\text {out }}\left(x, \hat{\boldsymbol{\omega}}_{\text {out }}\right)}{E_{\hat{\mathbf{n}}}^{\text {in }}\left(W_{\text {in }}, x\right)}$

BRDF: Bidirectional Reflectance Distribution Function

$E^{\text {suface }}\left(\theta_{i}, \phi_{i}\right)$ Irradiance at Surface in direction $\left(\theta_{i}, \phi_{i}\right)$
$L^{\text {surface }}\left(\theta_{r}, \phi_{r}\right) \quad$ Radiance of Surface in direction $\left(\theta_{r}, \phi_{r}\right)$

$$
\operatorname{BRDF}: f\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right)=\frac{L^{\text {surface }}\left(\theta_{r}, \phi_{r}\right)}{E^{\text {surface }}\left(\theta_{i}, \phi_{i}\right)}
$$

Reflectance: BRDF

- Units: sr^{-1}
- Real-valued function defined on the double-hemisphere
- Has many useful properties

Important Properties of BRDFs

- Conservation of Energy:

$$
\forall \hat{\omega}_{\text {in }}, \quad \int_{\Omega_{\text {out }}} f\left(\hat{\boldsymbol{\omega}}_{\text {in }}, \hat{\omega}_{\text {out }}\right) \cos \theta_{\text {out }} d \hat{\omega}_{\text {out }} \leq 1
$$

Property: "Helmholtz reciprocity"

- Helmholtz Reciprocity: (follows from $2^{\text {nd }}$ Law of Thermodynamics)

BRDF does not change when source and viewing directions are swapped.

$$
f_{r}\left(\vec{\omega}_{\mathrm{in}}, \vec{\omega}_{\text {out }}\right)=f_{r}\left(\vec{\omega}_{\text {out }}, \vec{\omega}_{\mathrm{in}}\right)
$$

Common assumption: Isotropy

BRDF does not change when surface is rotated about the normal.

Bi-directional Reflectance Distribution Function (BRDF)
Can be written as a function of 3 variables : $f\left(\theta_{i}, \theta_{r}, \phi_{i}-\phi_{r}\right)$

Reflectance: BRDF

- Units: sr^{-1}
- Real-valued function defined on the double-hemisphere
- Has many useful properties
- Allows computing output radiance (and thus pixel value) for any configuration of lights and viewpoint

reflectance equation
Why is there a cosine in the reflectance equation?

Derivation of the Reflectance Equation

$$
L^{s s c}\left(\theta_{i}, \phi_{i}\right)
$$

From the definition of BRDF:

$$
L^{\text {suface }}\left(\theta_{r}, \phi_{r}\right)=E^{\text {suface }}\left(\theta_{i}, \phi_{i}\right) f\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right)
$$

Derivation of the Scene Radiance Equation

From the definition of BRDF:

Write Surface Irradiance in terms of Source Radiance:

$$
L^{\text {surface }}\left(\theta_{r}, \phi_{r}\right)=\underline{L^{s r c}}\left(\theta_{i}, \phi_{i}\right) f\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right) \underline{\cos \theta_{i} d \omega_{i}}
$$

Integrate over entire hemisphere of possible source directions:
$L^{\text {surface }}\left(\theta_{r}, \phi_{r}\right)=\int_{2 \pi} L^{s r c}\left(\theta_{i}, \phi_{i}\right) f\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right) \cos \theta_{i} \underline{d \omega_{i}}$
Convert from solid angle to theta-phi representation:

Differential Solid Angles

$$
\begin{aligned}
d A & =(r d \theta)(r \sin \theta d \phi) \\
& =r^{2} \sin \theta d \theta d \phi
\end{aligned}
$$

$$
S=\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \theta d \theta d \phi=4 \pi
$$

BRDF

BRDF

Lambertian (diffuse) BRDF: energy equally distributed in all directions

What does the BRDF equal in this case?

$f_{r}\left(\vec{\omega}_{\text {in }}, \vec{\omega}_{\text {out }}\right)$
Bi-directional Reflectance Distribution Function (BRDF)

Diffuse Reflection and Lambertian BRDF

source intensity /

- Surface appears equally bright from ALL directions! (independent of \mathcal{v})
- Lambertian BRDF is simply a constant : $f\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right)=\frac{\rho_{d}}{\pi}$
- Most commonly used BRDF in Vision and Graphics!

BRDF

Specular BRDF: all energy concentrated in mirror direction
What does the BRDF equal in this case?

$f_{r}\left(\vec{\omega}_{\mathrm{in}}, \vec{\omega}_{\mathrm{out}}\right)$
Bi-directional Reflectance Distribution Function (BRDF)

Specular Reflection and Mirror BRDF

- Valid for very smooth surfaces.
- All incident light energy reflected in a SINGLE direction (only when $\vec{v}=\vec{r}$).
- Mirror BRDF is simply a double-delta function :

$$
f\left(\theta_{i}, \phi_{i} ; \theta_{v}, \phi_{v}\right)=\rho_{s} \delta\left(\theta_{i}-\theta_{v}\right) \delta\left(\phi_{i}+\pi-\phi_{v}\right)
$$

Example Surfaces

Body Reflection:
Diffuse Reflection
Matte Appearance
Non-Homogeneous Medium Clay, paper, etc

Surface Reflection:
Specular Reflection
Glossy Appearance
Highlights
Dominant for Metals

BRDF

Glossy BRDF: more energy concentrated in mirror direction than elsewhere

Trick for dielectrics (non-metals)

- BRDF is a sum of a Lambertian diffuse component and non-Lambertian specular components
- The two components differ in terms of color and polarization, and under certain conditions, this can be exploited to separate them.

$$
f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)=f_{d}+f_{s}\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)
$$

Trick for dielectrics (non-metals)

- BRDF is a sum of a Lambertian diffuse component and non-Lambertian specular components
- The two components differ in terms of color and polarization, and under certain conditions, this can be exploited to separate them.

$$
f\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)=f_{d}+f_{s}\left(\vec{\omega}_{i}, \vec{\omega}_{o}\right)
$$

Often called the dichromatic BRDF:

- Diffuse term varies with wavelength, constant with polarization
- Specular term constant with wavelength, varies with polarization

Trick for dielectrics (non-metals)

- In this example, the two components were separated using linear polarizing filters on the camera and light source.

Tabulated 4D BRDFs (hard to measure)

Gonioreflectometer

[Ngan et al., 2005]

Low-parameter (non-linear) BRDF models

- A small number of parameters define the (2D,3D, or 4D) function
- Except for Lambertian, the BRDF is non-linear in these parameters
- Examples:

Lambertian: $f\left(\omega_{i}, \omega_{o}\right)=\frac{a}{\pi}$ Where do these constants come from?
Phong: $\quad f\left(\omega_{i}, \omega_{o}\right)=\frac{a}{\pi}+b \cos ^{c}\left(2\left\langle\omega_{i}, n\right\rangle\left\langle\omega_{o}, n\right\rangle-\left\langle\omega_{i}, \omega_{o}\right\rangle\right)$
Blinn: $f\left(\omega_{i}, \omega_{o}\right)=\frac{a}{\pi}+b \cos ^{c} b\left(\omega_{i}, \omega_{o}\right)$
Lafortune: $\quad f\left(\omega_{i}, \omega_{o}\right)=\frac{a}{\pi}+b\left(-\omega_{i}^{\top} A \omega_{o}\right)^{k}$
Ward: $\quad f\left(\omega_{i}, \omega_{o}\right)=\frac{a}{\pi}+\frac{b}{4 \pi c^{2} \sqrt{\left\langle n, \omega_{i}\right\rangle\left\langle n, \omega_{o}\right\rangle}} \exp \left(\frac{-\tan ^{2} b\left(\omega_{i}, \omega_{o}\right)}{c^{2}}\right)$
a is called the albedo

Reflectance Models

Reflection: An Electromagnetic Phenomenon

Two approaches to derive Reflectance Models:

- Physical Optics (Wave Optics)
- Geometrical Optics (Ray Optics)

Geometrical models are approximations to physical models But they are easier to use!

Reflectance that Require Wave Optics

References

Basic reading:

- Szeliski, Section 2.2.
- Gortler, Chapter 21.

This book by Steven Gortler has a great introduction to radiometry, reflectance, and their use for image formation.

Additional reading:

- Arvo, "Analytic Methods for Simulated Light Transport," Yale 1995.
- Veach, "Robust Monte Carlo Methods for Light Transport Simulation," Stanford 1997.

These two thesis are foundational for modern computer graphics. Among other things, they include a thorough derivation (starting from wave optics and measure theory) of all radiometric quantities and associated integrodifferential equations. You can also look at them if you are interested in physics-based rendering.

- Dutre et al., "Advanced Global Illumination," 2006.

A book discussing modeling and simulation of other appearance effects beyond single-bounce reflectance.

- Weyrich et al., "Principles of Appearance Acquisition and Representation," FTCGV 2009.

A very thorough review of everything that has to do with modeling and measuring BRDFs.

- Walter et al., "Microfacet models for refraction through rough surfaces," EGSR 2007.

This paper has a great review of physics-based models for reflectance and refraction.

- Matusik, "A data-driven reflectance model," MIT 2003.

This thesis introduced the largest measured dataset of 4D reflectances. It also provides detailed discussion of many topics relating to modelling reflectance.

- Rusinkiewicz, "A New Change of Variables for Efficient BRDF Representation," 1998.
- Romeiro and Zickler, "Inferring reflectance under real-world illumination," Harvard TR 2010.

These two papers discuss the isotropy and other properties of common BRDFs, and how one can take advantage of them using alternative parameterizations.

- Shafer, "Using color to separate reflection components," 1984.

The paper introducing the dichromatic reflectance model.

- Stam, "Diffraction Shaders," SIGGRAPH 1999.
- Levin et al., "Fabricating BRDFs at high spatial resolution using wave optics," SIGGRAPH 2013.
- Cuypers et al., "Reflectance model for diffraction," TOG 2013.

These three papers describe reflectance effects that can only be modeled using wave optics (and in particular diffraction).

[^0]: - We keep track of the normal because a planar sensor with distinct orientation would converge to a different limit
 - In the literature, notations n and W are often omitted, and values are implied by context

