Convolutional neural networks

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

16-385 Computer Vision
http://16385.courses.cs.cmu.edu Spring 2021, Lecture 22 & 23

Overview of today’s lecture

« Some notes on optimization.
« Convolutional neural networks.

« Training ConvNets.

Slide credits

Most of these slides were adapted from:
* Noah Snavely (Cornell University).
» Fei-Fei Li (Stanford University).

* Andrej Karpathy (Stanford University).

Some notes on optimization

Summary

- Always use mini-batch gradient descent

- Incorrectly refer to it as “doing SGD” as everyone else
(or call it batch gradient descent)
- The mini-batch size is a hyperparameter, but it is not
very common to cross-validate over it (usually based
on practical concerns, e.g. space/time efficiency)

Learning rates

An

negative gradient direction

J’ | original v,

oL Step size: learning rate
0 -n— Too big: will miss the minimum
0 Too small: slow convergence

Learning rate scheduling

* Use different learning rate at each iteration.

e Most common choice:
No

N¢ \/E

Need to select initial learning rate ng, important!
* More modern choice: Adaptive learning rates.

=6 ({5

Many choices for G (Adam, Adagrad, Adadelta).

Momentum Update gadien

update
o //
9 4—'69 - 7]256; £
0

momentum
AO — w— + (1 — w)AB Take direction history
a0 into account!

weights grad = evaluate gradient(loss fun, data, weights)
vel = vel * 0.9 - step size * weights grad
weights += vel

Many other ways to perform optimization...

- Second order methods that use the Hessian (or its
approximation): BFGS, LBFGS, etc.

- Currently, the lesson from the trenches is that well-tuned
SGD+Momentum is very hard to beat for CNNs.

- No consensus on Adam etc.: Seem to give faster
performance to worse local minima.

Derivatives

* Given f(x), where x is vector of inputs
— Compute gradient of f at x: Vf(x)

How do we do differentiation?

Numerical differentiation

Numerical differentiation

af(z) _ . f@+h) - f(@
dx h —0 h

f(z+h) = f(z) + h L2

Numerical differentiation

df(z) _ . fe+h) - f)
dx h —0 h

f(z +h) = f(z) + h L

Numerical differentiation is:
— Approximate.

— Slow.
— Numerically unstable.

— Easy to write.

Symbolic differentiation

Symbolic differentiation

 What Mathematica does: Automatically derive
analytical expressions for derivative.

Symbolic differentiation

 What Mathematica does: Automatically derive
analytical expressions for derivative.

e Often results in very redundant (and expensive

to evaluate) expressions.
D[Log[l + Exp[w*x+b]], w]

eb WX W
f___:'._',“ 1 ::

¥ & eb'wx

nie)- D[Log[1l + Exp[w2 * Log[1l + Exp[wl*x+bl]] +b2]], wl]

bLbZ-wlx-wZLog:l-t:-Dl wlx

e W2 X

(1 +ebl-wlx) I"l +ebZ-wZLogil-c-“”" ""-‘*:)
\

e Often intractable.

Automatic differentiation (autodiff)

Automatic differentiation (autodiff)

@ An autodiff system will convert the program into a sequence of primitive
operations which have specified routines for computing derivatives.

@ In this representation, backprop can be done in a completely mechanical way.

Sequence of primitive operations:

Original 1 = wx
riginal program:
g prog gy b
zZz=wx—+ b t3 = —2z
— 1 t4:exp(t3)
y__
1 + exp(—2) =14 ta
1
£=§(y—t)2 y=1/ts
te =y—t
t; = to

= t7/2

In summary

 Numerical gradient: easy to implement, bad to use.
e Symbolic gradient: sometimes useful, often intractable.
* Automatic gradient: exact, fast, error-prone.

In practice: Use symbolic gradient for small/trivial
programs. Almost always use analytic gradient, but check
correctness of implementation with numerical gradient.

 This is called a gradient check.

Convolutional Neural
Networks

Aside: “CNN” vs “ConvNet”

Note:

- There are many papers that use either phrase, but

- “ConvNet’ is the preferred term, since “CNN”
clashes with other things called CNN

Yann LeCun

I HOME «

CONNECT

Motivation

]0 BREAKTHRUUGH Introduction The 10 Technologies Past Years
Temporary Social Prenatal DNA Additive Baxter: The Blue-
Media Sequencing Manutfacturing Collar Robot
Reading the DNA of
With massive amounts fetuses will be the Rodney Brooks's

of computational
power, machines can

Messages that quickly

next frontier of the
genomic revolution.

Skeptical about 3-D
printing? GE, the

newest creation is
easy to interact with,

now recognize objects self-destruct could But do you really want world's largest but the complex

and translate speech enhance the privacy of to know about the manufacturer, is on innovations behind the
in real time. Artificial online communications genetlic problems or the verge of using the robot show just how
intelligence is finally and make people freer musical aptitude of technology to make jet harditis to get along
getting smart. to be spontaneous. your unborn chid? parts. " with people. "
Memory implants Smart Watches Ultra-Efficient Solar Big Data from Supergrids

Products

White

™

: “ﬁ"" > 3
\f(a

-«g
uefs-ﬂ. ,.,-'§’ 5
T’;rd-" . flickr w
P aREloScuen

Translate‘l

O0RIC

Helping the Blind

©

so that we can show the
text in a caption.

a4) TE L7

https://www.facebook.com/zuck/videos/10102801434799001/

https://www.facebook.com/zuck/videos/10102801434799001/

(Unrelated) Dog vs Food

=
eeec0 Verizon ¥ 4:20 PM 76% . > eseee \erizon T 4:20 PM 34% >4

{ Albums chihuahua or muffin Select < Albums puppy or bagel Select

S karen zack
L
o4 chihuahua or muffin ?
VL)

[Karen Zack, @teenybiscuit]

(Unrelated) Dog vs Food

—
eseec Verizon F 4:20 PM 69% W > eee00 Verizon T 4:20 PM 69% .
<{ Albums shiba or marshmallow Select { Albums kitten or ice cream Select

[Karen Zack, @teenybiscuit]

CNNs in 2012: "SuperVision”

5\

(aka "AlexNet")

“AlexNet” — Won the ILSVRC2012 Challenge

=5

3\

3

3\

e

3

1A

1000

\ é\P s| 2 J
L Major breakthrough 15.3% Top-5 error on ILSVRC2012
(Next best 25.7%)
i all 51 e —) l\ l\ &= P 13 dense| [dense i
{{ 55 \ 192 192 128 Max = ||
220\(|l&trig Max T Max pooling 048
“of 4 pooling pooling

3

48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896—64,896-43,264—

4096—-4096—-1000.

[Krizhevsky, Sutskever, Hinton. NIPS 2012]

Recap: Before Deep Learning

At ||

il o i — [svm]— Ans
[

Input Extract Concatenate into Linear
Pixels Features a vector x Classifier

Figure: Karpathy 2016

The last layer of (most) CNNs
are linear classifiers

This piece is just a linear classifie)

'
A 4 A ga il

(GoogLeNet)

Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable

ConvNets

They'’re just neural networks with
3D activations and weight sharing

What shape should the
activations have”

X — Layer —_ h(l)—> Layer — h(z)—> P — f

\

- The input is an image, which is 3D
(RGB channel, height, width)

What shape should the
activations have”

X — Layer —_ h(l)—> Layer — h(z)—> P — f

\

- The input is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

What shape should the
activations have”

X — Layer —_ h(l)—> Layer — h(z)—> P — f

\

- The input is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D?

3D Activations

before:

output layer
input
layer hidden layer (1 D vectors)

Figure: Andrej Karpathy

3D Activations

before:

output layer
input
layer hidden layer (1 D vectors)

NOW: - h, h,

(3D arrays)

Figure: Andrej Karpathy

3D Activations

All Neural Net
activations

arranged in 3
dimensions:

Figure: Andrej Karpathy

HEIGHT

/ WIDTH

DEPTH

3D Activations

All Neural Net
activations
arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

DEPTH

Figure: Andrej Karpathy

3D Activations

1D Activations:

Figure: Andrej Karpathy

3D Activations

1D Activations: 3D Activations:

32

a hidden neuron in

32

Figure: Andrej Karpathy

3D Activations

32

32

Figure: Andrej Karpathy

a hidden neuron in
next layer

- The input is 3x32x32

- This neuron depends

on a 3xbx5 chunk of
the input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)

3D Activations

Example: consider the
32 region of the input “x”
xr a hidden neuron in
next layer . 7
@>® With output neuron A
5 h
32

Figure: Andrej Karpathy

3D Activations

Example: consider the
32 region of the input “x”
xr a hidden neuron in
next layer , I
E>® With output neuron A
5 Then the output is:
32
r__ r
- h' = Zx l.jle.jk +b
ijk

Figure: Andrej Karpathy

3D Activations

Example: consider the
32 region of the input “x”
xr a hidden neuron in
next layer , I
E>® With output neuron A
5 Then the output is:
32
r__ r
- h' = Zx l.jle.jk +b
ijk

\

Sum over 3 axes
Figure: Andrej Karpathy

3D Activations

32
xr a hidden neuron in
next layer
@>@
hr
5 1
32

Figure: Andrej Karpathy

3D Activations

32
xr a hidden neuron in
next layer
@>@ O
r r
5 h 1 h 2
32

Figure: Andrej Karpathy

3D Activations

- With 2 output neurons

X a hidden neuron in

next layer ' r
= h'| = Zx i Wi + b,
5 O Ijk

h'. h'
L)))
h)= zx ijkWszk +b,

ijk

Figure: Andrej Karpathy

3D Activations

- With 2 output neurons

X a hidden neuron in

ijk
r r
5 hy h,
o=
2 = Lo ik ™Mk
32 ijk

Figure: Andrej Karpathy

3D Activations

depth dlmensmn

@>@OOOO

32

Figure: Andrej Karpathy

3D Activations

32 depth dimension

@>@OOOO

32

Figure: Andrej Karpathy

We can keep adding
more outputs

These form a column
In the output volume:
[depth x 1 x 1]

3D Activations

32

32

Figure: Andrej Karpathy

depth dimension

@>@QOO<{
|

\I/

Each neuron has its
own 3D filter and
own (scalar) bias

We can keep adding
more outputs

These form a column
In the output volume:
[depth x 1 x 1]

32

3D Activations

32

=0 0000

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input

32

3D Activations

32

=0 0000

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input

Weight sharing:

Each filter shares
the same weights
(but each depth
index has its own
set of weights)

32

3D Activations

=0 0000

32

D sets of weights
(also called filters)

Figure: Andrej Karpathy

32

3D Activations

32

=0 0000

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

With weight
sharing,

this is called
convolution

32

3D Activations

32

=0 0000

>

D sets of weights
(also called filters)

Figure: Andrej Karpathy

With weight

sharing,

this is called
convolution

Without weight
sharing,

this is called a
locally
connected layer

3D Activations

f one fil - i
Qutputotoneiter e set of weights gives

/ one slice in the output

To get a 3D output of depth D,
use D different filters

\/
V

/ In practice, ConvNets use

- many filters (~64 to 1024)

3D Activations

f one fil - i
Qutputotoneiter e set of weights gives

/ one slice in the output

4

S

To get a 3D output of depth D,
~ use D different filters

\

/ In practice, ConvNets use

- many filters (~64 to 1024)

R — B
(input (output
depth) depth)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)

3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
u GINEEENNIZIIAYREENESESORETISEEREISRS
one filter = one depth slice (or activation map) (32 fi|ters’ each 3X5X5)

B -
i I = AR
PRSI RN
. \}
) RN

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

Activations:

.E- / % //

Figure: Andrej Karpathy

GINEEENNIZIIAYREENESESAEISEERIER G
one filter = one depth slice (or activation map) (32 filte rs, each 3X5X5)

3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

Activations:

O EAETIEY B TASTEET BT] LR P
one filter =\gne depth slice (or activation map) (32 fi|ter8’ each 3X5X5)

Beidt AN ES
ol N
" izh

Figure: Andrej Karpathy

\J/

3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

Activations:

ORI RIEY T TASTRET BET T L
one filter =\gne depth slice (or activation map) (32 fi|ters’ each 3X5X5)

..“. |

\J/

=t

0 I/ | :; —
Figure: Andrej Karpathy

(Recap)

A ConvNet is a sequence of convolutional layers, interspersed with
activation functions (and possibly other layer types)

32 28
CONV, CONYV, CONYV,
RelLU RelLU RelLU
eg.6 e.g. 10
5x5x3 5x5x6
32 filters filters

(Recap)

Convolution Layer

32x32x3 image

32 height

3 depth

(Recap)

Convolution Layer

32x32x3 image

5x5x3 filter
32 4
I| Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32

(Recap)

COnVOI Uthn Layer Filters always extend the full
e depth of the input volume
32x32x3 image /
ox5x3 filter
32 (4
Il Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32

(Recap)

Convolution Layer
__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wliz +b

~ 1 number:

(Recap)

Convolution Layer

activation map

__— 32x32x3 image
5x5x3 filter

=

32

convolve (slide) over all
spatial locations

Convolution Layer

(Recap)

__— 32x32x3 image

3L
/

//

32

=

__ 5x5x3 filter

convolve (slide) over all
spatial locations

consider a second, green filter

activation maps

y {

///g

28

(Recap)

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

Y &

Convolution Layer

g A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

Demos

e http://cs231n.stanford.edu/

e http://cs.stanford.edu/people/karpathy/convn
etjis/demo/mnist.html

http://cs231n.stanford.edu/
http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Weights
L~

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Output

Input

Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Recall that at each position,
we are doing a 3D sum:

W= x W, +b

ijk

ijk

(channel, row, column)

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input

Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Input size of the input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

01]0[0]10]0

Output

Qe |le |91l 10 | 919 | S

DD | S |O9O]e | o

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

Output

O || |O]|OC|]OC|O]]O]| O
8 a|l.|o |10 | © |99 | S

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

Output

O || |O]|OC|]OC|O]]O]| O
8 a|l.|o |10 | © |99 | S

Input

Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

01010010

Output

O || |O]|OC|]OC|O]]O]| O

ala|e |9 |]e |s

Input

Convolution:
How big is the output?

stride s
+—>
ofojlo|lojo|lofo]o]foO
0 L R 0
0 kernel| & 0
0 O 1 In general, the output has size:
’ ’ w. +2p—k
0 0 W = + 1
S
0 0
0 0
ofojo|lojo|lofOo]oO|foO
+—Pp < > 4—>

p width w._ p

stride s

>

Convo
How DIg Is t

0

out

O e 11D e | &a [« | €] e

0110

0

0

O o O 11D D |2 [2]S 1D

width w._

> 44—

ution:
ne output”

Example: k=3, s=1, p=1

+2p—
Wy, +2p kJ+1
S

w. +2-—3
n + 1

|

W.

n

VGGNet [Simonyan 2014]

p uses filters of this shape

Pooling

For most ConvNets, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common
- Why might “avg” be a poor choice?

downsampling
32

.t

16

32

Figure: Andrej Karpathy

Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

-

> o 112
224 downsampling

112
224

Max Pooling

Single depth slice

) tl111]2] 4
max pool with 2x2 filters
516 |7 8 and stride 2 6 | 8
3 | 2 i 3| 4
1121 3| 4
y

What's the backprop rule for max pooling?
- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy

Example ConvNet

CONV POOL

CONV

LAV B A8 B BV

RelLU

— &1 3 ¥ E 3 JEE Y

Figure: Andrej Karpathy

Example ConvNet

5 —»

g 2

V%IV

5 —

O

=

MIV

=5 : :
s IRRERERNENE
o —»

mU

e[T LT LT
ad (T ET T ED T
vw+IIIIIIIlII
£ — 15050 1 0 O I O
c—~ |HEHEFEENER
- HEENENENEN
s — (REEREERREN
=

chead | F | [11 17[F 1 |

— KRS TEIIRIE

CONV

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL gc
l Rel U l RelU l l RelU RelLU l RelLU l Rel U l (Fu"y-connected)

; ' , ‘ '

truck
car
Birplane
Bhip

horse

.y
— —
“llE=s
N E
| B ||
I I
e R
| T

IS I
Il TR
=TI
NN

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL gc
l Rel U l RelU l l RelU RelLU l RelLU l Rel U l (Fu"y-connected)

; ' , ‘ '

truck
car
Birplane
Bhip

horse

|
I
.
|
I
— =)
.
=1k
=

\I‘ ‘ : . ‘.
P —
{ f . » | do t

10x3x3 conv filters, stride 1, pad 1
2X2 pOOI filters, stride 2 Figure: Andrej Karpathy

Example: AlexNet [Krizhevsky 2012

convi conv2 conv3 conv4 convs fc6 fc7
1 sample
class
scores
1000
227x227 55x55 27x27 13x13 13x13 13x13
conv conv conv conv conv max full
max max full
norm norm
| I
I |
Extract high level features Classify

each sample
“max”: max pooling
“norm”: local response normalization
il fuIIy connected Figure: [Karnowski 2015] (with corrections)

Example: AlexNet [Krizhevsky 2012]

P

- zoom in

Training ConvNets

How do you actually
train these things”

Roughly speaking:

Gather Find a ConvNet Minimize
labeled data architecture the loss

iﬁ?ila_ll!ﬁntlsallmnu-ﬁﬁﬁﬂﬁﬁﬁ|||‘!l T lé
Sl T TR TR RS eI
Ly el et [o[E R R, T
::Eﬁu::lznl E=mE o .

([Carinate ﬂ;ﬁﬁ
.'rmdn-lnuﬂ““ = E. a1+
C R - =R L i o i
e T - ..5:;%
Pﬁ”ﬂ?—umi 6---1"’\!2u ””- — -. HHEE;

) P] e S -

4-lmam-- N0 || = R a1+
TR S TR e o

aafeafad iy
B

Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength
Minimize the loss and monitor progress

Fiddle with knobs

Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient

4. Update all parameters

Note: usually called “stochastic gradient descent” even
though SGD has a batch size of 1

Regularization

Regularization reduces overfitting:
| 2
L= L+ Ly, ng=/l—HWH2

data

A =0.001 A=0.01

[Andrej Karpathy htip://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Overtitting

Overfitting: modeling noise in the training set instead
of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship in
the training set

15

10

General rule: models that are
“bigger” or have more capacity
are more likely to overfit

0F

-5

(0) Dataset split

Split your data into “train”, “validation”, and “test”:

Dataset

Validation

' }

(0) Dataset split

Valid¢ation

Train: gradient descent and fine-tuning of parameters

Validation: determining hyper-parameters (learning rate,
regularization strength, etc) and picking an architecture

Test: estimate real-world performance
(e.g. accuracy = fraction correctly classified)

(0) Dataset split

Valid¢ation

Be careful with false discovery:

To avoid false discovery, once we have used a test set
once, we should not use it again (but nobody follows this
rule, since it's expensive to collect datasets)

Instead, try and avoid looking at the test score until the end

(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

original data zero-centered data normalized data

Figure: Andrej Karpathy

(1) Data preprocessing

In practice, you may also see PCA and Whitening of the data:

10

-10

original data

-10 -10

decorrelated data whitened data

10 10

-10 -5 0 S 9 -10 ~5 0 S 0

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Slide: Andrej Karpathy

(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.

An input image (256x256) Minus sign The mean input image

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky

(1) Data preprocessing

Augment the data — extract random crops from the
input, with slightly jittered offsets. Without this, typical
ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches
extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live
during training

Figure: Alex Krizhevsky

(2) Choose your architecture

Toy example: one hidden layer of size 50

50 hidden

\»
neurons
/ output layer 10 output
CIFAR-10 input neurons, one
images, 3072 layer hidden layer per class
numbers

Slide: Andrej Karpathy

(3) Initialize your weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

(the magnitude is important and this is not optimal — more on this later)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

Slide: Andrej Karpathy

(3) Check that the loss Is
reasonable

def init two layer model(input size, hidden size, output size):

model {}
model ['W]
model['b]

0.0001 * np.random.randn(input size, hidden size)
np.zeros(hidden size)

model [np.zeros(output size)

]
]
model['W2'] 0.0001 * np.random.randn(hidden size, output size)
]
e

mbd L

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classe
loss, grad = two layer net X train, model, y train| 0.0 disable regularization

print 1055 \

returns the loss and the
gradient for all parameters

Slide: Andrej Karpathy

(3) Check that the loss Is
reasonable

def init two layer model(input size, hidden size, output size):

model {}
model ['W]
model|['b]

0.0001 * np.random.randn(input size, hidden size)
np.zeros(hidden size)

model [np.zeros(output size)

]
]
model['W2'] 0.0001 * np.random.randn(hidden size, output size)
]
e

mbd L

model = init two layer model(32%32%3, 50, 10) # ingut size, hidden size, number of classe
loss, grad = two layer net(X train, model, y train] le3 crank Up regularization

print loss
s loss went up, good. (sanity check)

Slide: Andrej Karpathy

(4) Overtit a small portion of the data

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classe
trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples ‘_

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sqgd’', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Details:

'sgd’: vanilla gradient descent (no momentum etc)
learning_rate_decay = 1. constant learning rate
sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data
Slide: Andrej Karpathy

(4) Overfit a small portion of the data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: ©0.400000, val 0.400000, lr 1.000000e-03 =
Finished epoch 2 / 200: cost 2.302258, train: ©0.450000, val 0.450000, 1lr 1.000000e-03]
Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 8 / 200: cost 2.285096, train: ©0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val ©0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val ©0.600000, lr 1.000000e-03 .
Fiad abhad caaalk An 2 M™nAn . - " m|ArTIEN - - N CcCcAannn cam N sCcannn . WP MAAAAAN. "™

Finished epoch 195
Finished epoch 196
Finished epoch 197
Finished epoch 198
Finished epoch 199
Finished epoch 200
finished optimizati

—— - -—— - - - —— - wewmes » L e we W e e g me wmew o o ow w w ow— wow—

200: cost 0.002694, train:|1.000000J val 1.6000000, {} 1.000000e-03
200: cost 0.002674, train:|1.000000§ val 1.000000, lr 1.000000e-03
200: cost 0.002655, train:|1.000000§ val 1.000000, lr 1.000000e-03
200: cost 0.002635, train:]1.000000§ val 1.000000, lr 1.000000e-03
1
1

200: cost 0.002617, train:}1.000000 .000000, 1r 1.000000e-03
200: cost 0.002597, train:|1.000000 .000000, lr 1.000000e-03
n. best validation accuracy: 1.00000C

i TR TR Ve S " i

Slide: Andrej Karpathy

(4) Find a learning rate

Let’s start with small regularization and find the learning rate
that makes the loss decrease:

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num epochs=10, reg=0.000001, <«—————

update='sgd’', learning rate decay=1,

sample batches = True,

learning rate=le-6, verbose=True)

4) Find a learning rate

model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two laygr—hets
num_epochs =10, lreg=0.000001,'
update='sqgd’, | —decay=1,

learning rate=le-6,|verbose=True)

Finished epoch 1 / 10:|cost 2.302576, |trairj: 0.080000, 1 0.103000, 1lr 1.000000e-06
Finished epoch 2 / 10:|cost 2.302582, |trairj: 0.121000, 1 0.124000, 1lr 1.000000e-06
Finished epoch 3 / 10:|cost 2.302558, |trair: ©.119000, 1 0.138000, lr 1.000000e-06
Finished epoch 4 / 10:|cost 2.302519, |train: ©.127000, val 0.151000, 1lr 1.000000e-06
Finished epoch 5 / 10:|cost 2.302517, |trairn: 0.158000, 1 ©6.171000, 1lr 1.000000e-06
Finished epoch 6 / 10:|cost 2.302518, |trairj: 0.179000, 1 6.172000, 1lr 1.000000e-06
Finished epoch 7 / 10:|cost 2.302466, |trairj: ©.180000, 1 6.176000, 1lr 1.000000e-06
Finished epoch 8 / 10:|cost 2.302452, |trairj: 0.175000, 1 0.185000, 1lr 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |trairj: ©0.206000, 1 0.192000, 1lr 1.000000e-06
Finished epoch 10 / 10} cost 2.302420] train: 0.190000, jval 0.192000, 1lr 1.000000e-06
finished optimization. lbest validatiod accuracy: ©O. 0

Loss barely changes Why is the accuracy 20%?

(learning rate is too low or regularization too high)
Slide: Andrej Karpathy

(4) Find a learning rate

Learning rate: 1e6 — what could go wrong?

@
L oSS ////’////”
&

A weight somewhere in the network

(4) Find a learning rate

Coarse to fine search

First stage: only a few epochs (passes through the
data) to get a rough idea

Second stage: longer running time, tiner search

Tip: if loss > 3 * original loss, quit early
(learning rate too high)

Slide: Andrej Karpathy

(4) Find a learning rate

Normally, you don’t have the budget for lots of cross-
validation —> visualize as you go

Plot the loss

For very small learning
rates, the loss decreases
linearly and slowly

(Why linearly?)

Larger learning rates tend
to look more exponential

A
loss

low learning rate

high learning rate

_

good learning rate

>
epoch

Figure: Andrej Karpathy

(4) Find a learning rate

Normally, you don’t have the budget for lots of cross-
validation —> visualize as you go

Typical training loss:
Why is it varying so rapidly? =
The width of the curve is related

to the batchsize — if too noisy,
increase the batch size

Possibly too linear 5 5 5 5
(learning rate too small)

Figure: Andrej Karpathy

(4) Find a learning rate

Visualize the accuracy

Big gap: overfitting
(increase regularization)

No gap: underfitting
(increase model capacity,

make layers bigger
or decrease regularization)

Figure: Andrej Karpathy

(4) Find a learning rate

Visualize the weights

Noisy weights: possibly
regularization not strong
enough

Figure: Andrej Karpathy

(4) Find a learning rate

Visualize the weights

Nice clean weights:
training is proceeding well

Figure: Alex Krizhevsky , Andrej Karpathy

Learning rate schedule

How do we change the learning rate over time?
Various choices:

e Step down by a factor of 0.1 every 50,000
mini-batches (used by SuperVision [Krizhevsky 2012])

* Decrease by a factor of 0.97 every epoch
(used by GooglLeNet [Szegedy 2014])

e Scale by sqgrt(1-t/max_t)
(used by BVLC to re-implement GooglLeNet)

 Scale by 1/
e Scale by exp(-t)

Summary of things to fiddle

e Network architecture
e Learning rate, decay schedule, update type

e Regularization (L2, L1, maxnorm, dropout, ...)

* Loss function (softmax, SVM, ...)
* Weight initialization

Neural network
parameters

(Recall) Regularization
reduces overtfitting

|
L=L +L Lreg:/l—HWHE

data

A =0.001 A=0.01

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Example Regularizers

L2 regularization L. = /1%‘ ‘W‘E

(L2 regularization encourages small weights)

L1 regularization L., =AW = lz‘Wl]‘
i

(L1 regularization encourages sparse weights:
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg = ’11HW”1 T ’12HW”§

(combine L1 and L2 regularization)

Max norm
Clamp weights to some max norm

Wl <c

“Weight decay”

Regularization is also called “weight decay” because
the weights “decay” each iteration:

| I oL
L — —_ —_— —_—
reg 1 2 ‘ ‘W‘ ‘2 aW /IW
Gradient descent step: s

W« W—0oAW — —2
oW

Weight decay: grA {weights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andre| Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Dropout

Simple but powerful technique to reduce overfitting:

w PW
Present with Always
probability p present

(a) At training time (b) At test time

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]

Dropout

Simple but powerful technique to reduce overfitting:

- \ Without dropout

X - ﬂ
§ ‘\' % /\ N" LA 'V’ *'\A */v‘vkw“ ARG
.§) 0\", ' ' /\/\/\/\f ‘/\j/\Mf"j\f'\—\/M
! .
5 "\"0'\' Wlth dropout
vﬂw\\v&-‘\\ 5‘\‘:{%\\ AN A \
RIRERR A o A NI e
1.0 | ‘ bl Zaa' 272\ M'MJ .
0 200000 200000 600000 800000 1000000

Number of weight updates

|Srivasta et al, “"Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]

Dropout

Simple but powerful technique to reduce overfitting:

(a) Standard Neural Net (b) After applying dropout.

Note: Dropout can be interpreted as an approximation to taking the
geometric mean of an ensemble of exponentially many models

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]

3.5

- D e
AN — . .

Classification Error %

S
@

S
=)

Dropout

How much dropout? Around p =0.5

—
=

— Test Error
4 Training Error

0 0.2 0.4 0.6 0.8

Probability of retaining a unit (p)

(a) Keeping n fixed.

Classification Error %

3.0

= g 4 o
= o = o

ot
@

S
=

— Test Error
4 Training Error

Y

S

0.2 0.4 0.6 0.8
Probability of retaining a unit (p)

(b) Keeping pn fixed.

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from

Overfitting”, JMLR 2014]

1.0

Dropout

Case study: [Krizhevsky 2012]

“Without dropout, our network exhibits Dropout here

: I I 7]
substantial overfitting. l l
[5‘\‘\’. ‘3 ; \ 3 3\) s
.) ‘ | :
48] 192 192 128 2048 J04g \dense
5 27 128 ’ — —
U S . < 13 : 13 13
Nl |l
224 _\ ’ 5 [3 [3 3
\ \ _ N 3 | 13 3: 13 - 13 dense dense)
155 L—3J \ 1500
192 192 128 Max - -
V.l‘ Strid Max 128 Max pooling 2048 2048
“of 4 pooling pooling
3 48

But not here — why?

[Krizhevsky et al, “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012]

Dropout

p = 0.5 # probabl li1ty of keeping a unit active. higher less dropout Examp|e fOfward

def train_step(X): pass with a 3-

“u® X contains the data """ layer network
using dropout

’ - " 4 5) ~ y < g ’
F'walrd Dase Or examp L¢ Wel 1weural net

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout mask
H1 *= Ul # droy

H2 = np.maximum(©, np.dot(W2, Hl1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop

out = np.dot(W3, H2) + b3

(note, here X is a single input)

Figure: Andrej Karpathy

Dropout

Test time: scale the activations

Expected value of a neuron h with dropout:

Elh]l=ph+({(—-p)0=ph

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, Hl1l) + b2) * p
out = np.dot(W3, H2) + b3

We want to keep the same expected value

Figure: Andrej Karpathy

summary

Preprocess the data (subtract mean, sub-crops)
Initialize weights careftully

Use Dropout

Use SGD + Momentum

Fine-tune from ImageNet

Babysit the network as it trains

