Segmentation and graph-based techniques

16-385 Computer Vision

Overview of today's lecture

- Segmentation.
- Image as a graph.
- Shortest graph paths and Intelligent scissors.
- Graph-cuts and GrabCut.
- Normalized cuts.
- Boundaries.
- Clustering for segmentation.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).

Some slides were inspired or taken from:

- Fredo Durand (MIT).
- James Hays (Georgia Tech).

Segmentation

Gestalt Psychology

We perceive objects in their entirety before their individual parts.

Closer objects are grouped together

$$
000000
$$

$\omega \omega \omega \omega \infty$
01010 grouped together

Common Fate

Objects with similar motion or change in appearance are grouped together

Common Region/Connectivity

Connected objects are grouped together

Continuity Principle

Features on a continuous curve are grouped together

Symmetry Principle

Completion

Illusory or subjective contours are perceived

Segmentation/Clustering

$$
k=5
$$

$k=11$

What is a "good" segmentation??

First idea: Compare to human segmentation or to "ground truth"

No objective definition of segmentation!

- http://www.eecs.berkeley.edu/Research/Proje cts/CS/vision/grouping/resources.html

No objective definition of segmentation!

- http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bs ds/BSDS300/html/dataset/images/color/317080.html

Evaluation: Region overlap with ground truth

Evaluation: Region overlap with

 ground truthGround truth

Second idea: Superpixels

- Let's not even try to compute a "correct" segmentation
- Let's be content with an oversegmentation in which each region is very likely (formal guarantees are hard) to be uniform

Second idea: Superpixels

- Example from: How Do Superpixels Affect Image Segmentation?
- Progress in Pattern Recognition, Image Analysis and Applications. Springer LNCS. Volume 5197/2008.

Third idea: Multiple segmentations

- Generate many segmentations of the same image
- Even though many regions are "wrong", some consensus should emerge

Example: Improving Spatial Support for Objects via Multiple Segmentations Tomasz Malisiewicz and Alexei A. Efros. British Machine Vision Conference (BMVC), September, 2007.

Main approaches

- Spectral techniques
- Segmentation as boundary detection
- Graph-based techniques
- Clustering (K-means and probabilistic)
- Mean shift

Cut and paste procedure

2. Blend them into the composite

How do we do this?

Cut and paste procedure

Two different ways to think about the same thing:

- Finding seams (i.e., finding the pixels where to cut an image)
- Segmentation (i.e., splitting the image into "foreground" and "background")

I will be using the two terms interchangeable

Applications

Finding seams is also useful for:

Image as a graph

Fundamental theme of today's lecture

Images can be viewed as graphs

Nodes: pixels
Edges: Constraints between neighboring pixels

Graph-view of segmentation problem

Segmentation is node-labeling

Nodes: pixels
Edges: Constraints between neighboring pixels

Given pixel values and neighborhoods, decide:

- which nodes to label as foreground/background
or
- which nodes to label as seams
using graph algorithms

Graph-view of segmentation problem

Today we will cover:

Method	Labeling problem	Algorithm	Intuition		
Intelligent					
scissors				\quad label pixels as seams	Dijkstra's shortest
:---:					
path (dynamic					
programming)	\quad	short path is a			
:---:					
good boundary					

Shortest graph paths and intelligent scissors

Intelligent scissors

Problem statement:

Given two seed points, find a good boundary connecting them

Challenges:

- Make this real-time for interaction
- Define what makes a good boundary

Mortenson and Barrett (SIGGRAPH 1995) (you can tell it's old from the paper's low quality teaser figure)

Graph-view of this problem

Images can be viewed as graphs

Nodes: pixels
Edges: Constraints between neighboring pixels

Graph-view of this problem

Graph-view of intelligent scissors:

1. Assign weights (costs) to edges

Graph-view of this problem

Graph-view of intelligent scissors:

Graph-view of this problem

Graph-view of intelligent scissors:

1. Assign weights (costs) to edges
2. Select the seed nodes
3. Find shortest path between them

Graph-view of this problem

Graph-view of intelligent scissors:

1. Assign weights (costs) to edges
2. Select the seed nodes
3. Find shortest path between them

What algorithm can we use to find the shortest path?

Graph-view of this problem

Graph-view of intelligent scissors:

1. Assign weights (costs) to edges
2. Select the seed nodes
3. Find shortest path between them

What algorithm can we use to find the shortest path?

- Dijkstra's algorithm (dynamic programming)

Dijkstra's shortest path algorithm

Initialize, given seed s (pixel ID):

- cost(s) $=0 \quad$ \% total cost from seed to this point
- cost(!s) = big
- $\mathbf{A}=\{a l l$ pixels $\}$
- prev(s)=undefined
\% set to be expanded
\% pointer to pixel that leads to $q=s$
Precompute $\operatorname{cost}_{2}(q, r)$ \% cost between q to neighboring pixel r
Loop while A is not empty

1. $q=$ pixel in \mathbf{A} with lowest cost
2.Remove q from \mathbf{A}
2. For each pixel r in neighborhood of q that is in \mathbf{A}
a) cost_tmp $=\operatorname{cost}(q)+\operatorname{cost}_{2}(q, r) \%$ this updates the costs
b) if (cost_tmp $<\operatorname{cost}(r)$)
i. $\operatorname{cost}(\bar{r})=$ cost_tmp
ii. prev $(r)=q$

Graph-view of this problem

Graph-view of intelligent scissors:

1. Assign weights (costs) to edges
2. Select the seed nodes
3. Find shortest path between them

What algorithm can we use to find the shortest path?

- Dijkstra's algorithm (dynamic programming)

How should we select the edge weights to get good boundaries?

Selecting edge weights

Define boundary cost between neighboring pixels:

1. Lower if an image edge is present (e.g., as found by Sobel filtering).
2. Lower if the gradient magnitude at that point is strong.
3. Lower if gradient is similar in boundary direction.

Selecting edge weights

Gradient magnitude

Pixel-wise cost

Making it more interactive

1. Use cursor as the "end" seed, and always connect start seed to that
2. Every time the user clicks, use that point as a new starting seed and repeat

Examples

(c)

Seam collaging

Another use for image seam selection

Selecting edge weights for seam collaging

Good places to cut:

- similar color in both images
- high gradient in both images

Seam carving

Another use for image seam selection

Shai Avidan
Mitsubishi Electric Research Lab
Ariel Shamir
The interdisciplinary Center \& MERL

Examples

Where will intelligent scissors work well, or have problems?

Graph-cuts and GrabCut

GrabCut

Only user input is the box!

grab

cut paste

Combining region and boundary information

Magic Wand (198?)

regions

Intelligent scissors

boundary

GrabCut

regions \& boundary

GrabCut is a mixture of two components

1. Segmentation using graph cuts
2. Foreground-background modeling using unsupervised clustering

GrabCut is a mixture of two components

1. Segmentation using graph cuts

2. Foreground-background modeling using unsupervised clustering

Segmentation using graph cuts

Remember: Graph-based view of images

Nodes: pixels

Edges: Constraints between neighboring pixels

Markov Random Field (MRF)

Assign foreground/background labels based on:

$$
\operatorname{Energy}(\mathbf{y} ; \theta, \text { data })=\sum_{i} \psi_{1}\left(y_{i} ; \theta, \text { data }\right)+\sum_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta, \text { data }\right)
$$

$\uparrow \quad i, j \in e d g$ value, how likely is a pixel to be foreground or background?

Given their intensity values, how likely are two neighboring pixels to have two labels?

What kind of cost functions would you use for GrabCut?

Solving MRFs using max-flow/min-cuts (graph cuts)

$$
\operatorname{Energy}(\mathbf{y} ; \theta, \text { data })=\sum_{i} \psi_{1}\left(y_{i} ; \theta, \text { data }\right)+\sum_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta, \text { data }\right)
$$

Solving MRFs using max-flow/min-cuts (graph cuts)

Graph-cuts segmentation

1. Define graph

- usually 4-connected or 8-connected

2. Set weights to foreground/background

$$
\text { unary_}_{-} \operatorname{potential}(x)=-\log \left(\frac{P\left(c(x) ; \theta_{\text {foreground }}\right)}{P\left(c(x) ; \theta_{\text {background }}\right)} \frac{\bar{j}}{\dot{j}}\right.
$$

3. Set weights for edges between pixels

$$
\text { edge_potential }(x, y)=k_{1}+k_{2} \exp \left\{\frac{-\|c(x)-c(y)\|^{2}}{2 \sigma^{2}}\right\}
$$

4. GraphCut: Apply min-cut/max-flow algorithm

GrabCut is a mixture of two components

1. Segmentation using graph cuts
2. Foreground-background modeling using unsupervised clustering

Foreground-background modeling

Given foreground/background labels

build a color model for both

Learning color models

Given a set of points, fit k Gaussians.

Learning color models

Given a set of points, fit k Gaussians.

Intuition: "hard" clustering using K-means

Given k:
1.Select initial centroids at random.
2.Assign each object to the cluster with the nearest centroid.
3. Compute each centroid as the mean of the objects assigned to it.
4.Repeat previous 2 steps until no change.

K-means visualization

1. Select initial
centroids at random

K-means visualization

1. Select initial
centroids at random

2. Assign each object to the cluster with the nearest centroid.

K-means visualization

1. Select initial
centroids at random

2. Compute each centroid as the mean of the objects assigned to it (go to 2)

3. Assign each object to the cluster with the nearest centroid.

K-means visualization

Expectation-Maximization: "soft" version of K-means

Given k:
1.Select initial centroids at random.
compute the probability of each object being in a cluster
2. Assign each object to the cluster
with the nearest centroid.
M-step
3. Compute each centroid as the mean
of the objects assigned $i o$ it.
4.Repeat previous 2 steps until no change.

GrabCut is a mixture of two components

1. Segmentation using graph cuts

- Requires having foreground model

2. Foreground-background modeling using unsupervised clustering

- Requires having segmentation

What do we do?

GrabCut: iterate between two steps

1. Segmentation using graph cuts

- Requires having foreground model

2. Foreground-background modeling using unsupervised clustering

- Requires having segmentation

What do we do?

Iteration can be interactive

Examples

Magic Wand

Magnetic Lasso

Knockout 2

Bayes Matte

BJ - Graph Cut

GrabCut

Examples

What is easy or hard about these cases for graph cut-based segmentation?

Examples

番

Examples

Examples

Graph-cuts are a very general, very useful tool

- denoising
- stereo
- texture synthesis

- segmentation
- classification
- recognition
..

