Image filtering

16-385 Computer Vision

Start-of-semester survey (responses so far)

Which three weekdays would be best for office hours?
22 responses

Start-of-semester survey (responses so far)

Would you prefer to have in person office hours, or remote office hours?
22 responses

- Remote

Top comments on course website

nssampat commented on slide_034 of Course Introduction (4 days ago)

Deep fakes are one of the reasons why we must discuss ethics when it comes to CV and Al , as anyone can impersonate anyone else and make them appear to say or do certain things
achekuri commented on slide_034 of Course Introduction (4 days ago)
Deepfake Tom Cruise was a huge controversy on impersonation Tiktok because a lot of impersonators that actually look like Tom Cruise thought using deepfakes isn't fair.

Overview of today's lecture

- Types of image transformations.
- Point image processing.
- Linear shift-invariant image filtering.
- Convolution.
- Image gradients.

Slide credits

Most of these slides were adapted directly from:

- Kris Kitani (15-463, Fall 2016).

Inspiration and some examples also came from:

- Fredo Durand (Digital and Computational Photography, MIT).
- Kayvon Fatahalian (15-769, Fall 2016).

Types of image transformations

What is an image?

What is an image?

A (color) image is a 3D tensor
of numbers.

What is an image?

Each channel is a 2D array of numbers.

How many bits are the intensity values? ine intensity values?

color image patch

colorized for visualization

actual intensity values per channel

What is an image?

grayscale image

What is the range of the image function f ?

A (grayscale) image is a 2D function.

What types of image transformations can we do?

What types of image transformations can we do?

What types of image filtering can we do?

Point Operation

point processing

Neighborhood Operation

"filtering"

Point processing

Examples of point processing

original

darken

lower contrast

non-linear lower contrast

lighten

raise contrast

non-linear raise contrast

How would you implement these? Examples of point processing
original

darken

lower contrast

non-linear lower contrast

x
invert

lighten

raise contrast

non-linear raise contrast

How would you implement these? Examples of point processing
original

x
invert

darken

$x-128$
lighten

lower contrast

non-linear lower contrast

raise contrast

non-linear raise contrast

How would you implement these?

Examples of point processing
original

x
invert

darken

$x-128$
lighten

lower contrast

$\frac{x}{2}$
raise contrast

non-linear raise contrast

How would you implement these? Examples of point processing
original

x
invert

darken

$x-128$
lighten

lower contrast

$\frac{x}{2}$
raise contrast

non-linear lower contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear raise contrast

How would you implement these?

Examples of point processing
original

x
invert

darken

$x-128$
lighten

lower contrast

$\frac{x}{2}$
raise contrast

non-linear lower contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear raise contrast

$$
255-x
$$

How would you implement these?

Examples of point processing
original

x
invert

$255-x$
darken

$x-128$
lighten

lower contrast

$\frac{x}{2}$
raise contrast

non-linear lower contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear raise contrast

$x+128$

How would you implement these?

Examples of point processing
original

x
invert

$255-x$
darken

$x-128$
lighten

$x+128$
lower contrast

$\frac{x}{2}$
raise contrast

$x \times 2$
non-linear lower contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear raise contrast

How would you implement these?

Examples of point processing
original

x
invert

$255-x$
darken

$x-128$
lighten

$x+128$
lower contrast

$\frac{x}{2}$
raise contrast

$x \times 2$
non-linear lower contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear raise contrast

$$
\left(\frac{x}{255}\right)^{2} \times 255
$$

Many other types of point processing

camera output
image after stylistic tonemapping

Many other types of point processing

Linear shift-invariant image filtering

Linear shift-invariant image filtering

- Replace each pixel by a linear combination of its neighbors (and possibly itself).
- The combination is determined by the filter's kernel.
- The same kernel is shifted to all pixel locations so that all pixels use the same linear combination of their neighbors.

Example: the box filter

- also known as the 2D rect (not rekt) filter
- also known as the square mean filter

kernel $g[\cdot, \cdot]=\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

- replaces pixel with local average
- has smoothing (blurring) effect

Let's run the box filter

note that we assume that the kernel coordinates are centered
$f[\cdot, \cdot]$

$h[\cdot, \cdot]$

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} g \underset{\text { filter }}{g} \underset{\text { image (signal) }}{ }
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} g \underset{\text { filter }}{g} \underset{\text { image (signal) }}{ }[k, l] f[m+k, n+l]
$$

Let's run the box filter

image $f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output $h[\cdot, \cdot]$

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[k, l] f[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[k, l] f[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} g \underset{\text { filter }}{ } g[k, l] \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

image $f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output $\quad h[\cdot, \cdot]$

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{g}
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} g[k, l] \underset{\text { filter }}{ } \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{g}
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} \underset{\substack{\text { filter }}}{g[k, l]} \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

... and the result is

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{g}
$$

Some more realistic examples

Some more realistic examples

Some more realistic examples

Convolution

Convolution for 1D continuous signals

Definition of filtering as convolution:

Convolution for 1D continuous signals

Definition of filtering as convolution:

Consider the box filter example:
1D continuous

$$
f(x)=\left\{\begin{array}{lc}
1 & |x| \leq 0.5 \\
0 & \text { otherwise }
\end{array}\right.
$$

filtering output is a blurred version of g

$$
(f * g)(x)=\int_{-0.5}^{0.5} g(x-y) d y
$$

Convolution for 2D discrete signals

Definition of filtering as convolution:

Convolution for 2D discrete signals

Definition of filtering as convolution:

If the filter $f(i, j)$ is non-zero only within $-1 \leq i, j \leq 1$, then

$$
(f * I)(x, y)=\sum_{i, j=-1}^{1} f(i, j) I(x-i, y-j)
$$

The kernel we saw earlier is the 3×3 matrix representation of $f(i, j)$.

Convolution vs correlation

Definition of filtering as convolution:

$$
(f * I)(x, y)=\sum_{i, j=-\infty}^{\infty} f(i, j) I(x-i, y-j)
$$

Definition of filtering as correlation:

$$
(f * I)(x, y)=\sum_{i, j=-\infty}^{\infty} f(i, j) I(x+i, y+j)
$$

- Most of the time won't matter, because our kernels will be symmetric.
- Will be important when we discuss frequency-domain filtering (lectures 5-6).

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1		1	=			*	1	1	1	1
	1	1		1					row			
	1	1		1								

What is the rank of this filter matrix?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1		1	$=$			*	1	1	1	
	1	1		1					row			
	1	1		1								

Why is this important?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter? $\longrightarrow \mathrm{M}^{2} \times \mathrm{N}^{2}$
- What is the cost of convolution with a separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter?

A few more filters

original

3×3 box filter
do you see any problems in this image?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Is this a separable filter?

kernel	$\begin{gathered} \frac{1}{16} \end{gathered}$	1	2	1	
		2	4	2	
		1	2	1	

Any heuristics for selecting where to truncate?

- usually at 2-3б

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Is this a separable filter? Yes!

kernel	$\frac{1}{16}$	1	2	1	
		2	4	2	
		1	2	1	

kernel
16

Any heuristics for selecting where to truncate?

- usually at 2-3o

Gaussian filtering example

Gaussian vs box filtering

original

Which blur do you like better?

Gaussian vs box filtering

original

Which blur do you like better?

7x7 Gaussian

$7 x 7$ box

How would you create a soft shadow effect?

CMU

How would you create a soft shadow effect?

CMU

 overlay
 Gaussian blur

Other filters

input

filter

0	0	0
0	1	0
0	0	0

output

?

Other filters

input

filter

0	0	0
0	1	0
0	0	0

output

unchanged

Other filters

input

filter

0	0	0
0	1	0
0	0	0

input

output

output
?

Other filters

input
filter output0 0 0 0 1 0 0 0 0

filter

0	0	0
0	0	1
0	0	0

output

shift to left
by one

Other filters

input

filter

0	0	0				
0	2	0				
0	0	0	$-\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

output
?

Other filters

- do nothing for flat areas
- stress intensity peaks

Sharpening examples

Sharpening examples

Sharpening examples

Sharpening examples

do you see any problems in this image?

Do not overdo it with sharpening

original

sharpened

oversharpened

Image gradients

What are image edges?

grayscale image

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?
$\checkmark \quad$ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?
$\checkmark \quad$ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?
$\checkmark \quad$ You use finite differences.

Finite differences

High-school reminder: definition of a derivative using forward difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Finite differences

High-school reminder: definition of a derivative using forward difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Alternative: use central difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+0.5 h)-f(x-0.5 h)}{h}
$$

For discrete signals: Remove limit and set $\mathrm{h}=2$

$$
f^{\prime}(x)=\frac{f(x+1)-f(x-1)}{2} \quad \begin{aligned}
& \text { What convolution kernel } \\
& \text { does this correspond to? }
\end{aligned}
$$

Finite differences

High-school reminder: definition of a derivative using forward difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Alternative: use central difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+0.5 h)-f(x-0.5 h)}{h}
$$

For discrete signals: Remove limit and set $\mathrm{h}=2$

$$
f^{\prime}(x)=\frac{f(x+1)-f(x-1)}{2}
$$

-1	0	1
1	$?$	
1	0	-1

Finite differences

High-school reminder: definition of a derivative using forward difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Alternative: use central difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+0.5 h)-f(x-0.5 h)}{h}
$$

For discrete signals: Remove limit and set $\mathrm{h}=2$

$$
f^{\prime}(x)=\frac{f(x+1)-f(x-1)}{2}
$$

1D derivative filter

1	0	-1

The Sobel filter

1	0	-1	=	1		1	0	-1
2	0	-2		2	*	1D derivative filter		
1	0	-1		1				
Sobel filter				$\text { at } \mathrm{f}$				

The Sobel filter

Does this filter return large responses on vertical or horizontal lines?

The Sobel filter

Horizontal Sober filter:

What does the vertical Sobel filter look like?

The Sobel filter

Horizontal Sober filter:

1	0	-1
2	0	-2
1	0	-1

Vertical Sobel filter:

1	2	1				
0	0	0				
-1	-2	-1	$=$	1		
:---:	:---:	:---:				
0						
-1						
1	2	1	$\quad * \quad$			

Sobel filter example

original

which Sobel filter?

which Sobel filter?

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Several derivative filters

Sobel

1	0	-1
2	0	-2
1	0	-1

1	2	1
0	0	0
-1	-2	-1

Scharr

3	0	-3
10	0	-10
3	0	-3

3	10	3
0	0	0
-3	-10	-3

Prewitt | 1 | 0 | -1 |
| :---: | :---: | :---: |
| 1 | 0 | -1 |
| 1 | 0 | -1 |

1	1	1
0	0	0
-1	-1	-1

Roberts

0	1
-1	0

1	0
0	-1

- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3×3 ?

Computing image gradients

1. Select your favorite derivative filters.

$$
\boldsymbol{S}_{x}=\begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline 2 & 0 & -2 \\
\hline 1 & 0 & -1 \\
\hline
\end{array}
$$

$$
\boldsymbol{S}_{y}=\begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 0 & 0 & 0 \\
\hline-1 & -2 & -1 \\
\hline
\end{array}
$$

Computing image gradients

1. Select your favorite derivative filters.

$$
\boldsymbol{S}_{x}=\begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline 2 & 0 & -2 \\
\hline 1 & 0 & -1 \\
\hline
\end{array}
$$

$$
\boldsymbol{S}_{y}=\begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 0 & 0 & 0 \\
\hline-1 & -2 & -1 \\
\hline
\end{array}
$$

2. Convolve with the image to compute derivatives.

$$
\frac{\partial \boldsymbol{f}}{\partial x}=\boldsymbol{S}_{x} \otimes \boldsymbol{f} \quad \frac{\partial \boldsymbol{f}}{\partial y}=\boldsymbol{S}_{y} \otimes \boldsymbol{f}
$$

Computing image gradients

1. Select your favorite derivative filters.

$$
\boldsymbol{S}_{x}=\begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline 2 & 0 & -2 \\
\hline 1 & 0 & -1 \\
\hline
\end{array}
$$

$\boldsymbol{S}_{y}=$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -2 | -1 |

2. Convolve with the image to compute derivatives.

$$
\frac{\partial \boldsymbol{f}}{\partial x}=\boldsymbol{S}_{x} \otimes \boldsymbol{f} \quad \frac{\partial \boldsymbol{f}}{\partial y}=\boldsymbol{S}_{y} \otimes \boldsymbol{f}
$$

3. Form the image gradient, and compute its direction and amplitude.

$$
\nabla \boldsymbol{f}=\left[\frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y}\right] \quad \theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right) \quad\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

Image gradient example

original

vertical derivative

gradient amplitude

How does the gradient direction relate to these edges?

How do you find the edge of this signal?

How do you find the edge of this signal?

Using a derivative filter:

What's the problem here?

Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

How much should we blur?

Derivative of Gaussian (DoG) filter

Derivative theorem of convolution: $\quad \frac{\partial}{\partial x}(h \star f)=\left(\frac{\partial}{\partial x} h\right) \star f$

- How many operations did we save?

Laplace filter

Basically a second derivative filter.

- We can use finite differences to derive it, as with first derivative filter.

$$
\begin{gathered}
\text { first-order } \\
\text { finite difference }
\end{gathered} f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+0.5 h)-f(x-0.5 h)}{h} \longrightarrow \begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline
\end{array}
$$

second-order
finite difference

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \longrightarrow
$$

Laplace filter

Basically a second derivative filter.

- We can use finite differences to derive it, as with first derivative filter.

$$
\begin{gathered}
\text { first-order } \\
\text { finite difference }
\end{gathered} f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+0.5 h)-f(x-0.5 h)}{h} \longrightarrow \begin{array}{|c|c|c|}
\hline 1 & 0 & -1 \\
\hline
\end{array}
$$

$$
\begin{gathered}
\text { second-order } \\
\text { finite difference }
\end{gathered} f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \longrightarrow \begin{array}{|c|c|c|}
\hline 1 & -2 & 1 \\
\hline
\end{array}
$$

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges (but not very convenient).

