Geometric camera models

16-385 Computer Vision http://16385.courses.cs.cmu.edu/ Spring 2022, Lecture 9

Overview of today's lecture

- Some motivational imaging experiments.
- Pinhole camera.
- Accidental pinholes.
- Camera matrix.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).

Some slides inspired from:

- Fredo Durand (MIT).

Some motivational imaging experiments

Let's say we have a sensor...

... and an object we like to photograph

What would an image taken like this look like?

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

Bare-sensor imaging

All scene points contribute to all sensor pixels

Let's add something to this scene

What would an image taken like this look like?

Pinhole imaging

Pinhole imaging

Pinhole imaging

Pinhole imaging

Pinhole camera

Pinhole camera a.k.a. camera obscura

Pinhole camera a.k.a. camera obscura

First mention ...

First camera ...

Greek philosopher Aristotle (384 to 322 BC)

Pinhole camera terms

Pinhole camera terms

barrier (diaphragm)

image plane
digital sensor
(CCD or CMOS)
(

Focal length

Focal length

What happens as we change the focal length?

Focal length

What happens as we change the focal length?

Focal length

What happens as we change the focal length?
object projection is half the size

Pinhole size

Ideal pinhole has infinitesimally small size

- In practice that is impossible.

Pinhole size

What happens as we change the pinhole diameter?

Pinhole size

What happens as we change the pinhole diameter?

Pinhole size

What happens as we change the pinhole diameter?
real-world object

Pinhole size

What happens as we change the pinhole diameter?
object projection becomes
real-world object

What about light efficiency?

What about light efficiency?

The lens camera

Lenses map "bundles" of rays from points on the scene to the sensor.

How does this mapping work exactly?

The pinhole camera

The lens camera

The pinhole camera

Central rays propagate in the same way for both models!

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.

Important difference: focal length

In a pinhole camera, focal length is distance between aperture and sensor

Important difference: focal length

In a lens camera, focal length is distance where parallel rays intersect

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.
- We assume that the focus distance of the lens camera is equal to the focal length of the pinhole camera.

Remember: focal length f refers to different things for lens and pinhole cameras.

- In this lecture, we use it to refer to the aperture-sensor distance, as in the pinhole camera case.

Accidental pinholes

What does this image say about the world outside?

Accidental pinhole camera

Antonio Torralba, William T. Freeman
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Accidental pinhole camera

projected pattern on the wall

upside down

window with smaller gap

view outside window

Pinhole cameras

What are we imaging here?

Camera matrix

The camera as a coordinate transformation

The camera as a coordinate transformation

A camera is a mapping from:
the 3D world
to:

What are the dimensions of each variable?

The camera as a coordinate transformation

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

homogeneous
image coordinates
3×1
camera matrix
3×4
homogeneous
world coordinates
4×1

The pinhole camera

The (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the equation for image coordinate x in terms of X ?

The 2D view of the (rearranged) pinhole camera

What is the equation for image coordinate x in terms of X ?

The 2D view of the (rearranged) pinhole camera

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T} \rightarrow\left[\begin{array}{ll}
X / Z & Y / Z
\end{array}\right]
$$

The (rearranged) pinhole camera

What is the camera matrix P for a pinhole camera?

$$
\boldsymbol{x}=\mathbf{P X}
$$

The pinhole camera matrix

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T} \rightarrow\left[\begin{array}{ll}
X / Z & Y / Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What does the pinhole camera projection look like?

$$
\mathbf{P}=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

The pinhole camera matrix

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T} \rightarrow\left[\begin{array}{ll}
X / Z & Y / Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What does the pinhole camera projection look like?

$$
\begin{aligned}
& \text { The perspective } \\
& \text { projection matrix }
\end{aligned} \quad \mathbf{P}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The pinhole camera matrix

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T} \rightarrow\left[\begin{array}{ll}
X / Z & Y / Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What does the pinhole camera projection look like?

$$
\mathbf{P}=\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=\underset{\substack{\text { alternative way to write } \\
\text { the same thing }}}{\left[\begin{array}{lll}
\text { I } & \mathbf{0}
\end{array}\right]}
$$

More general case: arbitrary focal length

What is the camera matrix P for a pinhole camera?

$$
\boldsymbol{x}=\mathbf{P X}
$$

More general (2D) case: arbitrary focal length

What is the equation for image coordinate x in terms of X ?

More general (2D) case: arbitrary focal length - y
image plane

$\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}f X / Z & f Y / Z\end{array}\right]^{\top}$

The pinhole camera matrix for arbitrary focal length

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}
f X / Z & f Y / Z
\end{array}\right]^{\top}
$$

General camera model in homogeneous coordinates:

$$
\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What does the pinhole camera projection look like?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Generalizing the camera matrix

In general, the camera and image have different coordinate systems.

Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

shift vector transforming
How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$ camera origin to image origin

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

What does each part of the matrix represent?

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\mathbf{P}=\left[\begin{array}{llc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(homogeneous) transformation from 2D to 2D, accounting for not unit focal length and origin shift
(homogeneous) perspective projection from 3D to 2D, assuming image plane at $z=1$ and shared camera/image origin

Also written as: $\mathbf{P}=\mathbf{K}[\mathbf{I} \mid \mathbf{0}]$ where $\mathbf{K}=\left[\begin{array}{ccc}f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1\end{array}\right]$

Generalizing the camera matrix

In general, there are three, generally different, coordinate systems.

We need to know the transformations between them.

World-to-camera coordinate system transformation

World-to-camera coordinate system transformation

World-to-camera coordinate system transformation

$$
\left(\widetilde{\boldsymbol{X}}_{\boldsymbol{w}}-\widetilde{\boldsymbol{C}}\right)
$$

World-to-camera coordinate system transformation

$$
\underset{\text { rotate }}{\boldsymbol{R} \cdot\left(\widetilde{\boldsymbol{X}}_{\boldsymbol{w}}-\widetilde{\boldsymbol{C}}\right)} \text { translate }
$$

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$
\widetilde{\mathbf{X}}_{\mathbf{c}}=\mathbf{R} \cdot\left(\widetilde{\mathbf{X}}_{\mathbf{w}}-\tilde{\mathbf{C}}\right)
$$

How do we write this transformation in homogeneous coordinates?

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$
\widetilde{\mathbf{X}}_{\mathbf{c}}=\mathbf{R} \cdot\left(\widetilde{\mathbf{X}}_{\mathbf{w}}-\tilde{\mathbf{C}}\right)
$$

In homogeneous coordinates, we have:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R C} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \quad \text { or } \quad \mathbf{X}_{\mathbf{c}}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \tilde{\mathbf{C}} \\
\mathbf{0} & 1
\end{array}\right] \mathbf{X}_{\mathbf{w}}
$$

Incorporating the transform in the camera matrix

The previous camera matrix is for homogeneous 3D coordinates in camera coordinate system:

$$
\mathbf{x}=\mathbf{P} \mathbf{X}_{\mathbf{c}}=\mathbf{K}[\mathbf{I} \mid \mathbf{0}] \mathbf{X}_{\mathbf{c}}
$$

We also just derived:

$$
X_{c}=\left[\begin{array}{cc}
R & -R \tilde{C} \\
0 & 1
\end{array}\right] X_{w}
$$

Putting it all together

We can write everything into a single projection:

$$
\mathbf{x}=\mathbf{P} \mathbf{X}_{\mathbf{w}}
$$

The camera matrix now looks like:

Putting it all together

We can write everything into a single projection:

$$
\mathbf{x}=\mathbf{P} \mathbf{X}_{\mathbf{w}}
$$

The camera matrix now looks like:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

intrinsic parameters (3×3): correspond to camera internals (sensor not at $\mathrm{f}=1$ and origin shift)
extrinsic parameters (3x4): correspond to camera externals (world-to-image transformation)

General pinhole camera matrix

We can decompose the camera matrix like this:

$$
\underset{\text { (translate first then rotate) }}{\mathbf{P}=\mathbf{K} \mathbf{R}[\mathbf{I} \mid-\mathbf{C}]}
$$

Another way to write the mapping:

$$
\begin{aligned}
& \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& \text { where } \mathbf{t}=-\mathbf{R C}
\end{aligned}
$$

(rotate first then translate)

General pinhole camera matrix

 $\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{lll}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:c}
r_{1} & r_{2} & r_{3} & t_{1} \\
r_{4} & r_{5} & r_{6} & t_{2} \\
r_{7} & r_{8} & r_{9} & t_{3}
\end{array}\right] \\
& \text { intrinsic extrinsic } \\
& \text { parameters parameters } \\
& \mathbf{R}=\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
r_{7} & r_{8} & r_{9}
\end{array}\right] \quad \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right] \\
& \text { 3D rotation 3D translation }
\end{aligned}
$$

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Recap

What is the size and meaning of each term in the camera matrix?

Quiz

The camera matrix relates what two quantities?

Quiz

The camera matrix relates what two quantities?

$\boldsymbol{x}=\mathbf{P X}$

homogeneous 3D points to 2D image points

Quiz

The camera matrix relates what two quantities?

$\boldsymbol{x}=\mathbf{P X}$

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

Quiz

The camera matrix relates what two quantities?

$\boldsymbol{x}=\mathbf{P X}$

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

$$
P=I T[B \mid t]
$$

intrinsic and extrinsic parameters

More general camera matrices

The following is the standard camera matrix we saw.

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right] \quad[\mathbf{R}:-\mathbf{R C}]
$$

More general camera matrices

CCD camera: pixels may not be square.

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & 0 & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

How many degrees of freedom?

More general camera matrices

CCD camera: pixels may not be square.

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & 0 & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

How many degrees of freedom?
10 DOF

More general camera matrices

Finite projective camera: sensor be skewed.

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

How many degrees of freedom?

More general camera matrices

Finite projective camera: sensor be skewed.

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right][\mathbf{R}:-\mathbf{R C}]
$$

How many degrees of freedom?
11 DOF

