Stereo

http://16385.courses.cs.cmu.edu/

Overview of today's lecture

- Revisiting triangulation.
- Disparity.
- Stereo rectification.
- Stereo matching.
- Improving stereo matching.
- Structured light.

Slide credits

Some of these slides were adapted directly from:

- Kris Kitani (16-385, Spring 2017).
- Srinivasa Narasimhan (16-823, Spring 2017).

Revisiting triangulation

How would you reconstruct 3D points?

Left image

Right image

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image (how?)

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)
3. Find matching point along line (how?)

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)
3. Find matching point along line (how?)
4. Perform triangulation (how?)

Triangulation

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)
3. Find matching point along line (how?)
4. Perform triangulation (how?)

What are the disadvantages of this procedure?

Stereo rectification

What's different between these two images?

Objects that are close move more or less?

The amount of horizontal movement is inversely proportional to ...

The amount of horizontal movement is inversely proportional to ...

... the distance from the camera.

More formally...

$$
\frac{X}{Z}=\frac{x}{f}
$$

Disparity

$$
\begin{aligned}
d & =x-x^{\prime} \quad \text { (wrt to camera origin of image plane) } \\
& =\frac{b f}{Z}
\end{aligned}
$$

Disparity

$$
\begin{aligned}
d & =x-x^{\prime} \quad \begin{array}{l}
\text { inversely proportional } \\
\\
\\
\end{array}=\frac{b f}{Z}
\end{aligned}
$$

Real-time stereo sensing

Nomad robot searches for meteorites in Antartica http://www.cs.cmu.edu/~meteorite/

Subaru
Eyesight system

Pre-collision braking

What other vision system uses disparity for depth sensing?

Stereoscopes: A 19 th Century Pastime

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Is disparity the only depth cue the human visual system uses?

So can I compute depth from any two images of the same object?

So can I compute depth from any two images of the same object?

1. Need sufficient baseline
2. Images need to be 'rectified' first (make epipolar lines horizontal)

3. Rectify images
(make epipolar lines horizontal)
4. For each pixel
a. Find epipolar line
b. Scan line for best match
c. Compute depth from disparity

$$
Z=\frac{b f}{d}
$$

How can you make the epipolar lines horizontal?

image plane

What's special about these two cameras?

When are epipolar lines horizontal?
When this relationship holds:

$$
R=I \quad t=(T, 0,0)
$$

Proof in take-home quiz 5

It's hard to make the image planes exactly parallel

How can you make the epipolar lines horizontal?

Use stereo rectification?

What is stereo rectification?

What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

How can you do this?

What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

Need two
homographies (3x3 transform), one for each input image reprojection

Stereo Rectification

1. Rotate the right camera by \mathbf{R} (aligns camera coordinate system orientation only)
2. Rotate (rectify) the left camera so that the epipole is at infinity
3. Rotate (rectify) the right camera so that the epipole is at infinity
4. Adjust the scale

Stereo Rectification:

4. Scale both images by \mathbf{H}

Stereo Rectification:

Stereo Rectification:

1. Compute \mathbf{E} to get \mathbf{R}
2. Rotate right image by \mathbf{R}
3. Rotate both images by Rrect
4. Scale both images by \mathbf{H}

Stereo Rectification:

1. Compute \mathbf{E} to get \mathbf{R}
2. Rotate right image by \mathbf{R}
3. Rotate both images by Rrect

4. Scale both images by \mathbf{H}

Stereo Rectification:

1. Compute \mathbf{E} to get \mathbf{R}
2. Rotate right image by \mathbf{R}
3. Rotate both images by Rrect
4. Scale both images by \mathbf{H}

Stereo Rectification:

1. Compute \mathbf{E} to get \mathbf{R}
2. Rotate right image by \mathbf{R}
3. Rotate both images by Rrect
4. Scale both images by \mathbf{H}

Stereo Rectification:

1. Compute \mathbf{E} to get \mathbf{R}
2. Rotate right image by \mathbf{R}
3. Rotate both images by Rrect

4. Scale both images by \mathbf{H}

Stereo Rectification:

1. Compute \mathbf{E} to get \mathbf{R}
2. Rotate right image by \mathbf{R}
3. Rotate both images by Rrect
4. Scale both images by \mathbf{H}

Suppose $\mathbf{E}=[\mathbf{t}]_{\times} \mathbf{R}$

Step 1: Use E to get R

$$
\text { SVD: } \quad \mathbf{E}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \quad \text { Let } \mathbf{W}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We get FOUR solutions:

$$
\underset{\text { two possible rotations }}{\mathbf{R}_{1}=\mathbf{U W}} \mathbf{W}^{\top} \quad \mathbf{R}_{2}=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \quad[\mathbf{t}]_{\times}= \pm \mathbf{U} \mathbf{W} \mathbf{\Sigma} \mathbf{U}^{T}
$$

We get FOUR solutions:

$$
\begin{aligned}
& \mathbf{R}_{1}=\mathbf{U W} \mathbf{V}^{\top} \\
& {[\mathbf{t}]_{\times}=\mathbf{U W} \boldsymbol{\Sigma} \mathbf{U}^{T}}
\end{aligned}
$$

$$
\mathbf{R}_{2}=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top}
$$

$$
[\mathbf{t}]_{\times}=\mathbf{U W} \boldsymbol{\Sigma} \mathbf{U}^{T}
$$

$$
\begin{aligned}
& \mathbf{R}_{1}=\mathbf{U W V}^{\top} \\
& {[\mathbf{t}]_{\times}=-\mathbf{U W} \boldsymbol{\Sigma} \mathbf{U}^{T}}
\end{aligned}
$$

Which one do we choose?
Compute determinant of R, valid solution must be equal to 1 (note: $\operatorname{det}(R)=-1$ means rotation and reflection)

Compute 3D point using triangulation, valid solution has positive Z value (Note: negative Z means point is behind the camera)

Let's visualize the four configurations...

Find the configuration where the point is in front of both cameras

Find the configuration where the points is in front of both cameras

Find the configuration where the points is in front of both cameras

Stereo Rectification:

1. Compute \mathbf{E} to get \mathbf{R}
2. Rotate right image by \mathbf{R}
3. Rotate both images by Rrect
4. Scale both images by \mathbf{H}

When do epipolar
 lines become horizontal?

Parallel cameras

Where is the epipole?

Parallel cameras

Setting the epipole to infinity

(Building Rrect from e)

$$
\begin{aligned}
& \text { Let } R_{\text {rect }}=\left[\begin{array}{c}
\boldsymbol{r}_{1}^{\top} \\
\boldsymbol{r}_{2}^{\top} \\
\boldsymbol{r}_{3}^{\top}
\end{array}\right] \quad \text { Given: } \begin{array}{c}
\begin{array}{c}
\text { epipole e } \\
\text { (using SVD on E) } \\
\text { (translation from } \mathbf{E})
\end{array} \\
\boldsymbol{r}_{1}=\boldsymbol{e}_{1}=\frac{T}{\|T\|} \\
\boldsymbol{r}_{2}=\frac{1}{\sqrt{T_{x}^{2}+T_{y}^{2}}}\left[\begin{array}{lll}
-T_{y} & T_{x} & 0
\end{array}\right] \quad \begin{array}{c}
\text { epipole coincides with translation vector } \\
\text { the direction vector of } \\
\text { the optical axis }
\end{array} \\
\boldsymbol{r}_{3}=\boldsymbol{r}_{1} \times \boldsymbol{r}_{2}
\end{array} \quad \begin{array}{l}
\text { orthogonal vector }
\end{array}
\end{aligned}
$$

If $\quad \boldsymbol{r}_{1}=\boldsymbol{e}_{1}=\frac{T}{\|T\|} \quad$ and $\quad \boldsymbol{r}_{2} \quad \boldsymbol{r}_{3} \quad$ orthogonal

$$
\text { then } \quad R_{\mathrm{rect}} \boldsymbol{e}_{1}=\left[\begin{array}{c}
\boldsymbol{r}_{1}^{\top} \boldsymbol{e}_{1} \\
\boldsymbol{r}_{2}^{\top} \boldsymbol{e}_{1} \\
\boldsymbol{r}_{3}^{\top} \boldsymbol{e}_{1}
\end{array}\right]=\left[\begin{array}{l}
? \\
? \\
?
\end{array}\right]
$$

If $\quad \boldsymbol{r}_{1}=\boldsymbol{e}_{1}=\frac{T}{\|T\|} \quad$ and $\quad \boldsymbol{r}_{2} \quad \boldsymbol{r}_{3} \quad$ orthogonal

$$
\text { then } \quad R_{\text {rect }} \boldsymbol{e}_{1}=\left[\begin{array}{c}
\boldsymbol{r}_{1}^{\top} \boldsymbol{e}_{1} \\
\boldsymbol{r}_{2}^{\top} \boldsymbol{e}_{1} \\
\boldsymbol{r}_{3}^{\top} \boldsymbol{e}_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Where is this point located on the image plane?

If $\quad \boldsymbol{r}_{1}=\boldsymbol{e}_{1}=\frac{T}{\|T\|} \quad$ and $\quad \boldsymbol{r}_{2} \quad \boldsymbol{r}_{3} \quad$ orthogonal
then $\quad R_{\mathrm{rect}} \boldsymbol{e}_{1}=\left[\begin{array}{c}\boldsymbol{r}_{1}^{\top} \boldsymbol{e}_{1} \\ \boldsymbol{r}_{2}^{\top} \boldsymbol{e}_{1} \\ \boldsymbol{r}_{3}^{\top} \boldsymbol{e}_{1}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
Where is this point located on the image plane?
At x-infinity

Stereo Rectification Algorithm

1. Estimate E using the 8 point algorithm (SVD)
2. Estimate the epipole e (SVD of \mathbf{E})
3. Build Rrect from e
4. Decompose \mathbf{E} into \mathbf{R} and \mathbf{T}
5. Set $\mathbf{R}_{1}=\mathbf{R}_{\text {rect }}$ and $\mathbf{R}_{2}=\mathbf{R R}_{\text {rect }}$
6. Rotate each left camera point (warp image)
[$\left.x^{\prime} y^{\prime} z^{\prime}\right]=R_{1}[x y z]$
7. Rectified points as $p=f / z^{\prime}\left[x^{\prime} y^{\prime} z^{\prime}\right]$
8. Repeat 6 and 7 for right camera points using \mathbf{R}_{2}

Stereo matching

Depth Estimation via Stereo Matching

1. Rectify images
(make epipolar lines horizontal)
2. For each pixel
a. Find epipolar line
b. Scan line for best match

How would
c. Compute depth from disparity

$$
Z=\frac{b f}{d}
$$

Reminder from filtering

How do we detect an edge?

Reminder from filtering

How do we detect an edge?

- We filter with something that looks like an edge.

horizontal edge filter

vertical edge filter

Find this template

How do we detect the template in he following image?

Find this template

How do we detect the template in he following image?

What will the output look like?

Solution 1: Filter the image using the template as filter kernel.

Find this template

How do we detect the template in he following image?

Solution 1: Filter the image using the template as filter kernel.
What went wrong?

Find this template

How do we detect the template in he following image?

Increases for higher local intensities.

Find this template

How do we detect the template in he following image?

What will the output look like?

Solution 2: Filter the image using a zero-mean template.

Find this template

How do we detect the template in he following image?

output

Solution 2: Filter the image using a zero-mean template.

Find this template

How do we detect the template in he following image?

output

Not robust to highcontrast areas

Solution 2: Filter the image using a zero-mean template.

Find this template

How do we detect the template in he following image?

What will the output look like?

Solution 3: Use sum of squared differences (SSD).

Find this template

How do we detect the template in he following image?

Solution 3: Use sum of squared differences (SSD).

Find this template

How do we detect the template in he following image?

Not robust to local intensity changes

Solution 3: Use sum of squared differences (SSD).

Find this template

How do we detect the template in he following image?

Observations so far:

- subtracting mean deals with brightness bias
- dividing by standard deviation removes contrast bias

Can we combine the two effects?

Find this template

How do we detect the template in he following image?

Solution 4: Normalized cross-correlation (NCC).

Find this template

How do we detect the template in he following image?

1-output

True detections
thresholding

Solution 4: Normalized cross-correlation (NCC).

Find this template

How do we detect the template in he following image?

1-output

True detections
thresholding

Solution 4: Normalized cross-correlation (NCC).

What is the best method?

It depends on whether you care about speed or invariance.

- Zero-mean: Fastest, very sensitive to local intensity.
- Sum of squared differences: Medium speed, sensitive to intensity offsets.
- Normalized cross-correlation: Slowest, invariant to contrast and brightness.

Stereo Block Matching

- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Similarity Measure	Formula
Sum of Absolute Differences (SAD)	$\sum_{(i, j) \in W}\left\|I_{1}(i, j)-I_{2}(x+i, y+j)\right\|$
Sum of Squared Differences (SSD)	$\sum_{(i, j) \in W}\left(I_{1}(i, j)-I_{2}(x+i, y+j)\right)^{2}$
Zero-mean SAD	$\sum_{(i, j) \in W}\left\|I_{1}(i, j)-\bar{I}_{1}(i, j)-I_{2}(x+i, y+j)+\bar{I}_{2}(x+i, y+j)\right\|$
Locally scaled SAD	$\sum_{(i, j) \in W}\left\|I_{1}(i, j)-\frac{\bar{I}_{1}(i, j)}{\bar{I}_{2}(x+i, y+j)} I_{2}(x+i, y+j)\right\|$
Normalized Cross Correlation (NCC)	$\frac{\sum_{(i, j) \in W} I_{1}(i, j) \cdot I_{2}(x+i, y+j)}{2 \sum_{(i, j) \in W} I_{1}^{2}(i, j) \cdot \sum_{(i, j) \in W} I_{2}^{2}(x+i, y+j)}$

Effect of window size

$W=3$

$W=20$

Effect of window size

$W=3$

Smaller window

+ More detail
- More noise

$W=20$

Larger window

+ Smoother disparity maps
- Less detail
- Fails near boundaries

When will stereo block matching fail?

When will stereo block matching fail?

Improving stereo matching

Block matching
Ground truth

What are some problems with the result?

How can we improve depth estimation?

How can we improve depth estimation?
Too many discontinuities.
We expect disparity values to change slowly.
Let's make an assumption: depth should change smoothly

Energy Minimization

What defines a good stereo correspondence?

1. Match quality

- Want each pixel to find a good match in the other image

2. Smoothness

- If two pixels are adjacent, they should (usually) move about the same amount
energy function
(for one pixel)

Want each pixel to find a good match in the other image (block matching result)

Adjacent pixels should (usually) move about the same amount
(smoothness function)
$E(d)=E_{d}(d)+\lambda E_{s}(d)$

$$
E_{d}(d)=\sum C(x, y, d(x, y))
$$

data term $\quad(x, y) \in I$

$$
\begin{aligned}
& F(d)=F_{d}(d)+\lambda \mathcal{F}_{s}(d) \\
& E_{d}(d)=\sum_{(x, y) \in I} C(x, y, d(x, y)) \\
& \begin{array}{c}
\text { ssD distance between windows } \\
\text { centered at } 1(x, y) \text { and } J(x+d(x, y), y)
\end{array}
\end{aligned}
$$

$$
H_{s}(d)=\quad \sum\left(d_{p}, d_{q}\right)
$$

smoothness term $\quad(p, q) \in \mathcal{E}$
\mathcal{E} : set of neighboring pixels

$$
\underset{\text { thess term }}{E_{s}(d)}=\sum_{(p, q) \in \mathcal{E}} V\left(d_{p}, d_{q}\right)
$$

$$
V\left(d_{p}, d_{q}\right)=\left|d_{p}-d_{q}\right|
$$

$$
V\left(d_{p}, d_{q}\right)= \begin{cases}0 & \text { if } d_{p}=d_{q} \\ 1 & \text { if } d_{p} \neq d_{q}\end{cases}
$$

"Potts model"

One possible solution...

Dynamic Programming

$$
E(d)=E_{d}(d)+\lambda E_{s}(d)
$$

Can minimize this independently per scanline using dynamic programming (DP)

$$
D(x, y, d) \text { : minimum cost of solution such that } \mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}
$$

$$
D(x, y, d)=C(x, y, d)+\min _{d^{\prime}}\left\{D\left(x-1, y, d^{\prime}\right)+\lambda\left|d-d^{\prime}\right|\right\}
$$

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Structured light

Use controlled ("structured") light to make correspondences easier

Disparity between laser points on the same scanline in the images determines the 3-D coordinates of the laser point on object

Use controlled ("structured") light to make correspondences easier

Structured light and two cameras

Structured light and one camera

Projector acts like "reverse" camera

Example: Laser scanner

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

The Digital Michelangelo Project, Levoy et al.

The Digital Michelangelo Project, Levoy et al.

15-463/15-663/15-862 Computational Photography

Learn about structured light and other cameras - and build some on your own!

cameras that take video at the speed of light

cameras that see around corners

cameras that measure depth in real time

cameras that capture entire focal stacks

