Introduction to neural networks

Overview of today's lecture

- Perceptron.
- Neural networks.
- Training perceptrons.
- Gradient descent.
- Backpropagation.
- Stochastic gradient descent.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).
- Noah Snavely (Cornell University).
- Fei-Fei Li (Stanford University).
- Andrej Karpathy (Stanford University).

Perceptron

1950s Age of the Perceptron

1957 The Perceptron (Rosenblatt)
1969 Perceptrons (Minsky, Papert)

1980s Age of the Neural Network
 1986 Back propagation (Hinton)

1990s Age of the Graphical Model 2000s Age of the Support Vector Machine

2010s Age of the Deep Network

deep learning = known algorithms $\boldsymbol{+}$ computing power $\boldsymbol{+}$ big data

Learning representations
 by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton \dagger \& Ronald J. Williams*
* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA
\dagger Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal 'hidden' units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure ${ }^{1}$.

There have been many attempts to design self-organizing neural networks. The aim is to find a powerful synaptic modification rule that will allow an arbitrarily connected neural network to develop an internal structure that is appropriate for a particular task domain. The task is specified by giving the desired state vector of the output units for each state vector of the input units. If the input units are directly connected to the output units it is relatively easy to find learning rules that iteratively adjust the relative strengths of the connections so as to progressively reduce the difference between the actual and desired output vectors ${ }^{2}$. Learning becomes more interesting but
more difficult when we introduce hidden units whose actual or desired states are not specified by the task. (In perceptrons, there are 'feature analysers' between the input and output that are not true hidden units because their input connections are fixed by hand, so their states are completely determined by the input vector: they do not learn representations.) The learning procedure must decide under what circumstances the hidden units should be active in order to help achieve the desired input-output behaviour. This amounts to deciding what these units should represent. We demonstrate that a general purpose and relatively simple procedure is powerful enough to construct appropriate internal representations.
The simplest form of the learning procedure is for layered networks which have a layer of input units at the bottom; any number of intermediate layers; and a layer of output units at the top. Connections within a layer or from higher to lower layers are forbidden, but connections can skip intermediate layers. An input vector is presented to the network by setting the states of the input units. Then the states of the units in each layer are determined by applying equations (1) and (2) to the connections coming from lower layers. All units within a layer have their states set in parallel, but different layers have their states set sequentially, starting at the bottom and working upwards until the states of the output units are determined.
The total input, x_{j}, to unit j is a linear function of the outputs, y_{i}, of the units that are connected to j and of the weights, $w_{j i}$, on these connections

$$
\begin{equation*}
x_{j}=\sum_{i} y_{i} w_{j i} \tag{1}
\end{equation*}
$$

Units can be given biases by introducing an extra input to each unit which always has a value of 1 . The weight on this extra input is called the bias and is equivalent to a threshold of the opposite sign. It can be treated just like the other weights.
A unit has a real-valued output, y_{j}, which is a non-linear function of its total input

$$
\begin{equation*}
y_{j}=\frac{1}{1+\mathrm{e}^{-x_{j}}} \tag{2}
\end{equation*}
$$

[^0]
The Perceptron

Aside: Inspiration from Biology

A cartoon drawing of a biological neuron (left) and its mathematical model (right).
Neural nets/perceptrons are loosely inspired by biology.

But they certainly are not a model of how the brain works, or even how neurons work.

1: function Perceptron Algorithm
2: $\quad \boldsymbol{w}^{(0)} \leftarrow \mathbf{0}$

3: \quad for $t=1, \ldots, T$ do
4: $\quad \operatorname{RECEIVE}\left(\boldsymbol{x}^{(t)}\right)$
5: $\quad \hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
6 :
$\operatorname{RECEIVE}\left(y^{t}\right) \quad y \in\{1,-1\}$
7 :

$$
w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]
$$

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$

Receive $\left(y^{t}\right)$

$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$
initialized to 0
$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$
$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
$\operatorname{Receive}\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

- observation (1,-1)

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
Receive $\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

- observation $(1,-1)$

$$
\begin{aligned}
\hat{y}_{A}^{(t)} & =\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right) \\
& =1
\end{aligned}
$$

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
$\operatorname{Receive}\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

- observation $(1,-1)$
label -1

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
Receive $\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

update w

$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

- observation (1,-1)
label -1

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
Receive $\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$
update w
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$
$(-1,1)$
$(0,0)$
$-1 \quad(1,-1)$

- observation $(1,-1)$
label -1

$\operatorname{RECEIVE}\left(\boldsymbol{x}^{(t)}\right)$

$$
\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)
$$

Receive $\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$
$(-1,1)$
$\operatorname{RECEIVE}\left(\boldsymbol{x}^{(t)}\right)$ observation (-1,1)

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$$
\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)
$$

$$
\operatorname{RECEIVE}\left(y^{t}\right)
$$

$$
w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]
$$

$$
\begin{aligned}
\hat{y}_{A}^{(t)} & =\operatorname{sign}\left(\left\langle\boldsymbol{w}_{(-1,1)}^{(t-1)}, \underset{(-1,1)}{\boldsymbol{x}^{(t)}}\right\rangle\right) \\
& =1
\end{aligned}
$$

$$
(-1,1)
$$

$$
\text { observation }(-1,1)
$$

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$

$\operatorname{Receive}\left(y^{t}\right)$

$$
w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]
$$

$$
\begin{aligned}
\hat{y}_{A}^{(t)} & =\operatorname{sign}\left(\left\langle\underset{(-1,1)}{\left\langle\boldsymbol{w}^{(t-1)}\right.}, \underset{(-1,1)}{\left.\boldsymbol{x}^{(t)}\right\rangle}\right)\right. \\
& =1
\end{aligned}
$$

$$
(-1,1)
$$

$$
\text { observation }(-1,1)
$$

label +1

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
Receive $\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

update w

$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$
$(-1,1)$
$(-1,1)$
$+1$
$(-1,1)$
0

$\operatorname{RECEIVE}\left(\boldsymbol{x}^{(t)}\right)$
 $\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$

Receive $\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
$\operatorname{Receive}\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
$\operatorname{Receive}\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

$\operatorname{RECEIVE}\left(\boldsymbol{x}^{(t)}\right)$
 $\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$

$\operatorname{Receive}\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
Receive $\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

$\operatorname{Receive}\left(\boldsymbol{x}^{(t)}\right)$

$\hat{y}_{A}^{(t)}=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{(t-1)}, \boldsymbol{x}^{(t)}\right\rangle\right)$
Receive $\left(y^{t}\right)$
$w_{n}^{(t)}=w_{n}^{(t-1)}+y_{t} \cdot x_{n}^{(t)} \cdot \mathbf{1}\left[y^{(t)} \neq \hat{y}^{(t)}\right]$

repeat ...

The Perceptron

Another way to draw it...

Programming the 'forward pass'

Activation function (sigmoid, logistic function)

Neural networks

Connect a bunch of perceptrons together ...

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

How many perceptrons in this neural network?

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

'one perceptron’

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

'two perceptrons'

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

'three perceptrons'

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

'four perceptrons'

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

Connect a bunch of perceptrons together ...

Neural Network

a collection of connected perceptrons

'six perceptrons'

Some terminology...

'input' layer

...also called a Multi-layer Perceptron (MLP)

Some terminology...

...also called a Multi-layer Perceptron (MLP)

Some terminology...

'hidden' layer

'input' layer

...also called a Multi-layer Perceptron (MLP)

all pairwise neurons between layers are connected

all pairwise neurons between layers are connected

How many neurons (perceptrons)?
How many weights (edges)?

How many learnable parameters total?

How many neurons (perceptrons)? $4+2=6$

How many weights (edges)?

How many learnable parameters total?

How many neurons (perceptrons)?

$$
4+2=6
$$

How many weights (edges)?
$(3 \times 4)+(4 \times 2)=20$

How many learnable parameters total?

How many neurons (perceptrons)?

$$
4+2=6
$$

How many weights (edges)?
$(3 \times 4)+(4 \times 2)=20$

How many learnable parameters total?

$$
20+\underset{\text { bias terms }}{4}+2=26
$$

Training perceptrons

Let's start easy

world's smallest perceptron!

$$
y=w x
$$

What does this look like?

world's smallest perceptron!

$$
y=w x
$$

(a.k.a. line equation, linear regression)

Learning a Perceptron

Given a set of samples and a Perceptron

$$
\begin{gathered}
\left\{x_{i}, y_{i}\right\} \\
y=f_{\mathrm{PER}}(x ; w)
\end{gathered}
$$

Estimate the parameters of the Perceptron
w

Learning a Perceptron

Given a set of samples and a Perceptron

$$
\begin{gathered}
\left\{x_{i}, y_{i}\right\} \\
y=f_{\mathrm{PER}}(x ; w) \\
\begin{array}{c}
\text { what is this } \\
\text { activation function? }
\end{array}
\end{gathered}
$$

Estimate the parameters of the Perceptron
w

Learning a Perceptron

Given a set of samples and a Perceptron

$$
\begin{aligned}
& \qquad\left\{x_{i}, y_{i}\right\} \\
& y=f_{\mathrm{PER}}(x ; w) \\
& \text { what is this } \begin{array}{l}
\text { tivation function? }
\end{array} \\
& \text { linear function! } f(x)=w x
\end{aligned}
$$

Estimate the parameters of the Perceptron
w

Given training data:

x	y
10	10.1
2	1.9
3.5	3.4
1	1.1

What do you think the weight parameter is?

$$
y=w x
$$

Given training data:

x	y
10	10.1
2	1.9
3.5	3.4
1	1.1

What do you think the weight parameter is?

$$
y=w x
$$

An Incremental Learning Strategy

(gradient descent)

Given several examples

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

and a perceptron
$\hat{y}=w x$

An Incremental Learning Strategy
 (gradient descent)

Given several examples

$$
\begin{gathered}
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \\
\text { and a perceptron } \\
\hat{y}=w x
\end{gathered}
$$

Modify weight w such that $\quad \hat{y}$ gets 'closer' to $\quad y$

An Incremental Learning Strategy
 (gradient descent)

Given several examples

$$
\begin{gathered}
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \\
\text { and a perceptron } \\
\hat{y}=w x
\end{gathered}
$$

Modify weight w such that \hat{y} gets 'closer' to
perceptron
parameter
true
perceptron output

An Incremental Learning Strategy
 (gradient descent)

Given several examples

$$
\begin{gathered}
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \\
\text { and a perceptron } \\
\hat{y}=w x
\end{gathered}
$$

Modify weight w such that \hat{y} gets 'closer' to
perceptron
parameter

what does this mean?
true
perceptron output
label

Loss Function defines what it means to be close to the true solution

YOU get to chose the loss function!

(some are better than others depending on what you want to do)

Squared Error (L2)

(a popular loss function) ((why?))

L1 Loss

$$
\ell(\hat{y}, y)=|\hat{y}-y|
$$

L2 Loss
$\ell(\hat{y}, y)=(\hat{y}-y)^{2}$

Zero-One Loss
$\ell(\hat{y}, y)=\mathbf{1}[\hat{y}=y]$

back to the...

World's Smallest Perceptron!

$$
y=w x
$$

(a.k.a. line equation, linear regression)
function of ONE parameter!

Learning Strategy
 (gradient descent)

Given several examples

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

and a perceptron

$$
\hat{y}=w x
$$

Modify weight w such that \hat{y} gets 'closer' to
true
label

Code to train your perceptron:

$$
\begin{aligned}
& \text { for } n=1 \ldots N \\
& \quad w=w+\left(y_{n}-\hat{y}\right) x_{i} ;
\end{aligned}
$$

just one line of code!

Now where does this come from?

Gradient descent

(partial) derivatives tell us how much one variable affects another

Two ways to think about them:

Slope of a function

Knobs on a machine

1. Slope of a function:

$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}=\left[\frac{\partial f(\boldsymbol{x})}{\partial x}, \frac{\partial f(\boldsymbol{x})}{\partial y}\right]$
describes the slope around a point

2. Knobs on a machine:

small change in parameter $\Delta w_{1} \longrightarrow$ output will change by $\frac{\partial f(x)}{\partial w_{1}} \Delta w_{1}$

Gradient descent:

Given a
fixed-point on a function, move in the direction opposite of the gradient

Gradient descent:

update rule:

$$
w=w-\nabla w
$$

Backpropagation

back to the...

World's Smallest Perceptron!

$$
y=w x
$$

(a.k.a. line equation, linear regression)
function of ONE parameter!

Training the world's smallest perceptron

for $n=1 \ldots N$

This is just gradient descent, that means...

$$
w=w+\left(y_{n}-\hat{y}\right) x_{i}
$$

this should be the gradient of the loss
function
$d \mathcal{L}$ $d w$...is the rate at which this will change...

$$
\mathcal{L}=\frac{1}{2}(y-\hat{y})^{2}
$$

... per unit change of this

the weight parameter

Let's compute the derivative...

Compute the derivative

$$
\begin{aligned}
\frac{d \mathcal{L}}{d w} & =\frac{d}{d w}\left\{\frac{1}{2}(y-\hat{y})^{2}\right\} \\
& =-(y-\hat{y}) \frac{d w x}{d w} \\
& =-(y-\hat{y}) x=\nabla w \text { just shorthand }
\end{aligned}
$$

That means the weight update for gradient descent is:

$$
\begin{aligned}
w & =w-\nabla w \quad \text { move in direction of negative gradient } \\
& =w+(y-\hat{y}) x
\end{aligned}
$$

Gradient Descent (world's smallest perceptron)
For each sample

$$
\left\{x_{i}, y_{i}\right\}
$$

1. Predict
a. Forward pass

$$
\begin{aligned}
& \hat{y}=w x_{i} \\
& \mathcal{L}_{i}=\frac{1}{2}\left(y_{i}-\hat{y}\right)^{2}
\end{aligned}
$$

b. Compute Loss
2. Update
a. Back Propagation
$\frac{d \mathcal{L}_{i}}{d w}=-\left(y_{i}-\hat{y}\right) x_{i}=\nabla w$
b. Gradient update $w=w-\nabla w$

Training the world's smallest perceptron

for $n=1 \ldots N$

$$
w=w+\left(y_{n}-\hat{y}\right) x_{i}
$$

world's (second) smallest perceptron!

function of two parameters!

Gradient Descent

For each sample

$\left\{x_{i}, y_{i}\right\}$

1. Predict
a. Forward pass
b. Compute Loss
we just need to compute partial derivatives for this network
2. Update
a. Back Propagation
b. Gradient update

Derivative computation

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{1}} & =\frac{\partial}{\partial w_{1}}\left\{\frac{1}{2}(y-\hat{y})^{2}\right\} \\
& =-(y-\hat{y}) \frac{\partial \hat{y}}{\partial w_{1}} \\
& =-(y-\hat{y}) \frac{\partial \sum_{i} w_{i} x_{i}}{\partial w_{1}} \\
& =-(y-\hat{y}) \frac{\partial w_{1} x_{1}}{\partial w_{1}} \\
& =-(y-\hat{y}) x_{1}=\nabla w_{1}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{2}} & =\frac{\partial}{\partial w_{2}}\left\{\frac{1}{2}(y-\hat{y})^{2}\right\} \\
& =-(y-\hat{y}) \frac{\partial \hat{y}}{\partial w_{2}} \\
& =-(y-\hat{y}) \frac{\partial \sum_{i} w_{i} x_{i}}{\partial w_{1}} \\
& =-(y-\hat{y}) \frac{\partial w_{2} x_{2}}{\partial w_{2}} \\
& =-(y-\hat{y}) x_{2}=\nabla w_{2}
\end{aligned}
$$

Why do we have partial derivatives now?

Derivative computation

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{1}} & =\frac{\partial}{\partial w_{1}}\left\{\frac{1}{2}(y-\hat{y})^{2}\right\} & \frac{\partial \mathcal{L}}{\partial w_{2}} & =\frac{\partial}{\partial w_{2}}\left\{\frac{1}{2}(y-\hat{y})^{2}\right\} \\
& =-(y-\hat{y}) \frac{\partial \hat{y}}{\partial w_{1}} & & =-(y-\hat{y}) \frac{\partial \hat{y}}{\partial w_{2}} \\
& =-(y-\hat{y}) \frac{\partial \sum_{i} w_{i} x_{i}}{\partial w_{1}} & & =-(y-\hat{y}) \frac{\partial \sum_{i} w_{i} x_{i}}{\partial w_{1}} \\
& =-(y-\hat{y}) \frac{\partial w_{1} x_{1}}{\partial w_{1}} & & =-(y-\hat{y}) \frac{\partial w_{2} x_{2}}{\partial w_{2}} \\
& =-(y-\hat{y}) x_{1}=\nabla w_{1} & & =-(y-\hat{y}) x_{2}=\nabla w_{2}
\end{aligned}
$$

Gradient Update

$$
\begin{aligned}
w_{1} & =w_{1}-\eta \nabla w_{1} & w_{2} & =w_{2}-\eta \nabla w_{2} \\
& =w_{1}+\eta(y-\hat{y}) x_{1} & & =w_{2}+\eta(y-\hat{y}) x_{2}
\end{aligned}
$$

Gradient Descent

For each sample

$$
\left\{x_{i}, y_{i}\right\}
$$

1. Predict
a. Forward pass $\hat{y}=f_{\text {MLP }}\left(x_{i} ; \theta\right)$
b. Compute Loss $\quad \mathcal{L}_{i}=\frac{1}{2}\left(y_{i}-\hat{y}\right) \quad \begin{gathered}\text { (side computation to track loss. } \\ \text { not neededed for backeprop) }\end{gathered}$
two lines now
2. Update
a. Back Propagation

$$
\begin{aligned}
& \nabla w_{1 i}=-\left(y_{i}-\hat{y}\right) x_{1 i} \\
& \nabla w_{2 i}=-\left(y_{i}-\hat{y}\right) x_{2 i}
\end{aligned}
$$

$$
w_{1 i}=w_{1 i}+\eta(y-\hat{y}) x_{1 i}
$$

b. Gradient update
$w_{2 i}=w_{2 i}+\eta(y-\hat{y}) x_{2 i}$
(adjustable step size)

We haven't seen a lot of 'propagation' yet because our perceptrons only had one layer...

multi-layer perceptron

function of FOUR parameters and FOUR layers!

$a_{1}=w_{1} \cdot x+b_{1}$

$a_{1}=w_{1} \cdot x+b_{1}$

$a_{1}=w_{1} \cdot x+b_{1}$
$a_{2}=w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)$

$a_{1}=w_{1} \cdot x+b_{1}$
$a_{2}=w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)$

$a_{1}=w_{1} \cdot x+b_{1}$
$a_{2}=w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)$
$a_{3}=w_{3} \cdot f_{2}\left(w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)\right)$

$a_{1}=w_{1} \cdot x+b_{1}$
$a_{2}=w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)$
$a_{3}=w_{3} \cdot f_{2}\left(w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)\right)$

$a_{1}=w_{1} \cdot x+b_{1}$
$a_{2}=w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)$
$a_{3}=w_{3} \cdot f_{2}\left(w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)\right)$
$y=f_{3}\left(w_{3} \cdot f_{2}\left(w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)\right)\right)$

Entire network can be written out as one long equation

$$
y=f_{3}\left(w_{3} \cdot f_{2}\left(w_{2} \cdot f_{1}\left(w_{1} \cdot x+b_{1}\right)\right)\right)
$$

We need to train the network:
What is known? What is unknown?

Entire network can be written out as a long equation

We need to train the network:
What is known? What is unknown?

Entire network can be written out as a long equation

We need to train the network:
What is known? What is unknown?

Learning an MLP

Given a set of samples and a MLP

$$
\begin{gathered}
\left\{x_{i}, y_{i}\right\} \\
y=f_{\mathrm{MLP}}(x ; \theta)
\end{gathered}
$$

Estimate the parameters of the MLP

$$
\theta=\{f, w, b\}
$$

Gradient Descent

For each random sample $\left\{x_{i}, y_{i}\right\}$

1. Predict
a. Forward pass
$\hat{y}=f_{\mathrm{MLP}}\left(x_{i} ; \theta\right)$
b. Compute Loss
2. Update
a. Back Propagation
b. Gradient update

So we need to compute the partial derivatives

$$
\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}=\left[\frac{\partial \mathcal{L}}{\partial w_{3}} \frac{\partial \mathcal{L}}{\partial w_{2}} \frac{\partial \mathcal{L}}{\partial w_{1}} \frac{\partial \mathcal{L}}{\partial b}\right]
$$

Remember,
Partial derivative $\frac{\partial L}{\partial w_{1}}$ describes...

So, how do you compute it?

The Chain Rule

According to the chain rule...

$$
\frac{\partial L}{\partial w_{3}}=\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}}
$$

Intuitively, the effect of weight on loss function: $\frac{\partial L}{\partial w_{3}}$

$$
\begin{aligned}
& \text { resort the nememork } f_{2}-w_{3} \quad L(y, \hat{y}) \\
& \frac{\partial L}{\partial w_{3}}=\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \quad \text { Chain Rule! }
\end{aligned}
$$

$$
\text { resto flimenemork } f_{2}=w_{3} \quad L(y, \hat{y})
$$

$$
\begin{aligned}
\frac{\partial L}{\partial w_{3}} & =\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& =-\eta(y-\hat{y}) \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}}
\end{aligned}
$$

Just the partial derivative of L2 loss

$$
a_{3} \mid f_{3} \longrightarrow \hat{y} \quad L(y, \hat{y})
$$

$$
\begin{aligned}
\frac{\partial L}{\partial w_{3}} & =\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& =-\eta(y-\hat{y}) \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}}
\end{aligned}
$$

Let's use a Sigmoid function

$$
\frac{d s(x)}{d x}=s(x)(1-s(x))
$$

$L(y, \hat{y})$

$$
\begin{aligned}
\frac{\partial L}{\partial w_{3}} & =\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& =-\eta(y-\hat{y}) \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& =-\eta(y-\hat{y}) f_{3}\left(1-f_{3}\right) \frac{\partial a_{3}}{\partial w_{3}}
\end{aligned} \begin{gathered}
\text { Lets use a sigmoid function } \\
\frac{d s(x)}{d r}=s(x)(1-s(x))
\end{gathered}
$$

$$
{ }^{\text {restoftren emmork }} f_{2}=w_{3} \longrightarrow a_{3} \mid f_{3} \longrightarrow \hat{y}
$$

$L(y, \hat{y})$

$$
\begin{aligned}
\frac{\partial L}{\partial w_{3}} & =\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& =-\eta(y-\hat{y}) \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& =-\eta(y-\hat{y}) f_{3}\left(1-f_{3}\right) \frac{\partial a_{3}}{\partial w_{3}} \\
& =-\eta(y-\hat{y}) f_{3}\left(1-f_{3}\right) f_{2}
\end{aligned}
$$

$$
\frac{\partial L}{\partial w_{2}}=\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial w_{2}}
$$

$\frac{\partial L}{\partial w_{2}}=\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial w_{2}}$
already computed.
re-use (propagate)!

THE CHAIN RULE

A.K.A. BACKPROPAGATION

The chain rule says...

$$
\frac{\partial L}{\partial w_{1}}=\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial w_{1}}
$$

The chain rule says...

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial w_{3}}==\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& \frac{\partial \mathcal{L}}{\partial w_{2}}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial w_{2}} \\
& \frac{\partial \mathcal{L}}{\partial w_{1}}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial w_{1}} \\
& \frac{\partial \mathcal{L}}{\partial b}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial b}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial w_{3}}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& \frac{\partial \mathcal{L}}{\partial w_{2}}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial w_{2}} \\
& \frac{\partial \mathcal{L}}{\partial w_{1}}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial w_{1}} \\
& \frac{\partial \mathcal{L}}{\partial b}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial b}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial w_{3}}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
& \frac{\partial \mathcal{L}}{\partial w_{2}}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial w_{2}} \\
& \frac{\partial \mathcal{L}}{\partial w_{1}}=\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial w_{1}} \\
& \frac{\partial \mathcal{L}}{\partial b}=\frac{\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial b}}{\partial b}
\end{aligned}
$$

Gradient Descent

For each example sample $\left\{x_{i}, y_{i}\right\}$

1. Predict
a. Forward pass
b. Compute Loss

$$
\hat{y}=f_{\mathrm{MLP}}\left(x_{i} ; \theta\right)
$$

\mathcal{L}_{i}
2. Update
a. Back Propagation

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{3}} & =\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial w_{3}} \\
\frac{\partial \mathcal{L}}{\partial w_{2}} & =\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial w_{2}} \\
\frac{\partial \mathcal{L}}{\partial w_{1}} & =\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial w_{1}} \\
\frac{\partial \mathcal{L}}{\partial b} & =\frac{\partial \mathcal{L}}{\partial f_{3}} \frac{\partial f_{3}}{\partial a_{3}} \frac{\partial a_{3}}{\partial f_{2}} \frac{\partial f_{2}}{\partial a_{2}} \frac{\partial a_{2}}{\partial f_{1}} \frac{\partial f_{1}}{\partial a_{1}} \frac{\partial a_{1}}{\partial b} \\
w_{3} & =w_{3}-\eta \nabla w_{3} \\
w_{2} & =w_{2}-\eta \nabla w_{2} \\
w_{1} & =w_{1}-\eta \nabla w_{1} \\
b & =b-\eta \nabla b
\end{aligned}
$$

b. Gradient update

Gradient Descent

For each example sample $\left\{x_{i}, y_{i}\right\}$

1. Predict
a. Forward pass
b. Compute Loss
$\hat{y}=f_{\mathrm{MLP}}\left(x_{i} ; \theta\right)$
\mathcal{L}_{i}
2. Update
a. Back Propagation $\frac{\partial \mathcal{L}}{\partial \theta}$
vector of parameter partial derivatives
$\theta \leftarrow \theta+\eta \frac{\partial \mathcal{L}}{\partial \theta}$

Stochastic gradient descent

What we are truly minimizing:

$$
\min _{\theta} \sum_{i=1}^{N} L\left(y_{i}, f_{M L P}\left(x_{i}\right)\right)
$$

The gradient is:

What we are truly minimizing:

$$
\min _{\theta} \sum_{i=1}^{N} L\left(y_{i}, f_{M L P}\left(x_{i}\right)\right)
$$

The gradient is:

$$
\sum_{i=1}^{N} \frac{\partial L\left(y_{i}, f_{M L P}\left(x_{i}\right)\right)}{\partial \theta}
$$

What we use for gradient update is:

What we are truly minimizing:

$$
\min _{\theta} \sum_{i=1}^{N} L\left(y_{i}, f_{M L P}\left(x_{i}\right)\right)
$$

The gradient is:

$$
\sum_{i=1}^{N} \frac{\partial L\left(y_{i}, f_{M L P}\left(x_{i}\right)\right)}{\partial \theta}
$$

What we use for gradient update is:

$$
\frac{\partial L\left(y_{i}, f_{M L P}\left(x_{i}\right)\right)}{\partial \theta} \quad \text { for some i }
$$

Stochastic Gradient Descent

For each example sample $\left\{x_{i}, y_{i}\right\}$

1. Predict
a. Forward pass
b. Compute Loss
$\hat{y}=f_{\mathrm{MLP}}\left(x_{i} ; \theta\right)$
\mathcal{L}_{i}
2. Update
a. Back Propagation $\frac{\partial \mathcal{L}}{\partial \theta}$
vector of parameter partial derivatives
$\theta \leftarrow \theta+\eta \frac{\partial \mathcal{L}}{\partial \theta}$

How do we select which sample?

How do we select which sample?

- Select randomly!

Do we need to use only one sample?

How do we select which sample?

- Select randomly!

Do we need to use only one sample?

- You can use a minibatch of size $B<N$.

Why not do gradient descent with all samples?

How do we select which sample?

- Select randomly!

Do we need to use only one sample?

- You can use a minibatch of size $B<N$.

Why not do gradient descent with all samples?

- It's very expensive when N is large (big data).

Do I lose anything by using stochastic GD?

How do we select which sample?

- Select randomly!

Do we need to use only one sample?

- You can use a minibatch of size $B<N$.

Why not do gradient descent with all samples?

- It's very expensive when N is large (big data).

Do I lose anything by using stochastic GD?

- Same convergence guarantees and complexity!
- Better generalization.

[^0]: † To whom correspondence should be addressed.

