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• Some notes about radiometry.

• Quick overview of the n-dot-l model.

• Photometric stereo.

• Uncalibrated photometric stereo.

• Generalized bas-relief ambiguity.

• Shape from shading.

Overview of today’s lecture
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Quick overview of 
radiometry



Five important equations/integrals to remember
Flux measured by a sensor of area X and directional receptivity W:

Reflectance equation:

Radiance under directional lighting and Lambertian BRDF (“n-dot-l shading”):

Conversion of a (hemi)-spherical integral to a surface integral:

Computing (hemi)-spherical integrals:

and



Quiz 1: Measurement of a sensor using a thin lens

What integral should we write for the power measured by infinitesimal  pixel p?
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Quiz 1: Measurement of a sensor using a thin lens

What integral should we write for the power measured by infinitesimal  pixel p?

Can I transform this integral over the hemisphere to an integral over the aperture area?



Quiz 1: Measurement of a sensor using a thin lens

Can I write the denominator in a more convenient form?



Quiz 1: Measurement of a sensor using a thin lens

What does this say about the image I am capturing?



Vignetting

Four types of vignetting:

• Mechanical: light rays blocked by hoods, filters, and other objects.

• Lens: similar, but light rays blocked by lens elements.

• Natural: due to radiometric laws (“cosine fourth falloff”).

• Pixel: angle-dependent sensitivity of photodiodes.

Fancy word for: pixels far off the center receive less light

white wall under uniform light more interesting example of vignetting



Quiz 2: BRDF of the moon

What BRDF does the moon have?



Quiz 2: BRDF of the moon

What BRDF does the moon have?
• Can it be diffuse?



Quiz 2: BRDF of the moon

What BRDF does the moon have?
• Can it be diffuse?

Even though the moon 
appears matte, its edges 
remain bright.



Rough diffuse appearance



Photometric stereo



Even simpler:
Directional lighting

• Assume that, over the observed region of interest, all source of incoming 
flux is from one direction

๏ Convenient representation

“light direction”

“light strength”

!
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Simple shading
ASSUMPTION 1:

LAMBERTIAN
ASSUMPTION 2:

DIRECTIONAL LIGHTING



“N-dot-l” shading
ASSUMPTION 1:

LAMBERTIAN
ASSUMPTION 2:

DIRECTIONAL LIGHTING



Image Intensity and 3D Geometry

• Shading as a cue for shape reconstruction
• What is the relation between intensity and shape?



“N-dot-l” shading
ASSUMPTION 1:

LAMBERTIAN
ASSUMPTION 2:

DIRECTIONAL LIGHTING

Why do we call these normal “shape”?



x

z

what is a camera 
like this called?

viewing rays for 
different pixels

imaged 
surface

Surfaces and normals



Surfaces and normals

x

z

viewing rays for 
different pixels

imaged 
surface

Surface representation as a 
depth field (also known as 

Monge surface):

𝑧 = 𝑓(𝑥, 𝑦)
pixel coordinates 
on image place

depth at each pixel

How does surface normal 
relate to this representation?

orthographic
camera



Surfaces and normals

x

z

orthographic
camera

viewing rays for 
different pixels

imaged 
surface

Surface representation as a 
depth image (also known as 

Monge surface):

𝑧 = 𝑓(𝑥, 𝑦)
pixel coordinates 
on image place

depth at each pixel

Unnormalized normal:

)𝑛 𝑥, 𝑦 =
𝑑𝑓
𝑑𝑥
,
𝑑𝑓
𝑑𝑦

,−1

Actual normal:

𝑛(𝑥, 𝑦) = )𝑛 𝑥, 𝑦 / )𝑛 𝑥, 𝑦
Normals are scaled spatial derivatives of depth image! 



Shape from a Single Image?
• Given a single image of an object with known surface 

reflectance taken under a known light source, can we 
recover the shape of the object?



Human Perception

4

How Do We Do It?
• Humans have to make assumptions about illumination: 

bump (left) is perceived as hole (right) when upside down

Illumination direction is unknown. It is assumed to come from above



Examples of the classic bump/dent stimuli used to test lighting assumptions when judging 
shape from shading, with shading orientations (a) 0° and (b) 180° from the vertical.

Thomas R et al. J Vis 2010;10:6



Human Perception

by V. Ramachandran

• Our brain often perceives shape from shading.

• Mostly, it makes many assumptions to do so.

• For example:

Light is coming from above (sun).

Biased by occluding contours.



Single-lighting is ambiguous
ASSUMPTION 1:

LAMBERTIAN
ASSUMPTION 2:

DIRECTIONAL LIGHTING



Lambertian photometric stereo

Assumption: We know the lighting directions.



Lambertian photometric stereo

define “pseudo-normal”

solve linear system 
for pseudo-normal

What are the 
dimensions of 

these matrices?



Lambertian photometric stereo

define “pseudo-normal”

solve linear system 
for pseudo-normal

What are the 
knowns and 
unknowns?



Lambertian photometric stereo

define “pseudo-normal”

solve linear system 
for pseudo-normal

How many lights 
do I need for 

unique solution?



Lambertian photometric stereo

define “pseudo-normal”

solve linear system 
for pseudo-normal

once system is solved, 
b gives normal 
direction and albedo

How do we solve 
this system?



Solving the Equation with three lights
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Is there any reason to use 
more than three lights?



More than Three Light Sources

• Get better SNR by using more lights
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• Least squares solution:
nSI ~=
nSSIS ~TT =

( ) ISSSn TT 1~ −
=

• Solve for          as beforen,ρ Moore-Penrose pseudo inverse

( )( )1331 ××=× NN



Computing light source directions

• Trick:  place a chrome sphere in the scene

– the location of the highlight tells you the source direction



Limitations

• Big problems
– Doesn’t work for shiny things, semi-translucent things
– Shadows, inter-reflections

• Smaller problems
– Camera and lights have to be distant
– Calibration requirements

• measure light source directions, intensities
• camera response function



Depth from normals
• Solving the linear system per-pixel gives us an 

estimated surface normal for each pixel

• How can we compute depth from normals?
• Normals are like the “derivative” of the true depth

Input photo Estimated normals Estimated normals
(needle diagram)



Surfaces and normals

x

z

orthographic
camera

viewing rays for 
different pixels

imaged 
surface

Surface representation as a 
depth image (also known as 

Monge surface):

𝑧 = 𝑓(𝑥, 𝑦)
pixel coordinates 

in image space
depth at each pixel

Unnormalized normal:

)𝑛 𝑥, 𝑦 =
𝑑𝑓
𝑑𝑥
,
𝑑𝑓
𝑑𝑦

,−1

Actual normal:

𝑛(𝑥, 𝑦) = )𝑛 𝑥, 𝑦 / )𝑛 𝑥, 𝑦
Normals are scaled spatial derivatives of depth image! 



Normal Integration
• Integrating a set of derivatives is easy in 1D

• (similar to Euler’s method from diff. eq. class)

• Could just integrate normals in each column / row 
separately

• Instead, we formulate as a linear system and solve for 
depths that best agree with the surface normals



Depth from normals

Get a similar equation for V2
• Each normal gives us two linear constraints on z
• compute z values by solving a matrix equation

V1
V2

N



Results

1. Estimate light source directions
2. Compute surface normals
3. Compute albedo values
4. Estimate depth from surface normals
5. Relight the object (with original texture and uniform albedo)



Results: Lambertian Sphere

Input Images

Estimated AlbedoEstimated Surface Normals

Needles are projections
of surface normals on 

image plane



Lambertain Mask



Results – Albedo and Surface Normal



Results – Shape of Mask



Results: Lambertian Toy

Input Images

Estimated Surface Normals Estimated Albedo

I.2



Non-idealities: interreflections



Non-idealities: interreflections

Shallow reconstruction 
(effect of interreflections)

Accurate reconstruction 
(after removing interreflections)



What if the light directions are unknown?



Uncalibrated photometric 
stereo



What if the light directions are unknown?

define “pseudo-normal”

solve linear system 
for pseudo-normal



What if the light directions are unknown?

define “pseudo-normal”

solve linear system 
for pseudo-normal at 

each image pixel
𝑀

𝑀
𝐵 M: number of pixels



What if the light directions are unknown?

define “pseudo-normal”

solve linear system 
for pseudo-normal at 

each image pixel
𝑀

𝑀
𝐵

How do we solve this 
system without 
knowing light matrix L?



Factorizing the measurement matrix

Lights Pseudonormals

What are the dimensions?



Factorizing the measurement matrix
• Singular value decomposition:

This 
decomposition 

minimizes
|I-LB|2



Are the results unique?



Are the results unique?

I = L B = (L Q-1) (Q B)

We can insert any 3x3 matrix Q in the decomposition and get the same images:



Are the results unique?

I = L B = (L Q-1) (Q B)

We can insert any 3x3 matrix Q in the decomposition and get the same images:

Can we use any assumptions to remove some of these 9 degrees of freedom?



Generalized bas-relief 
ambiguity



Enforcing integrability
What does the matrix B correspond to?



Enforcing integrability
What does the matrix B correspond to?

• Surface representation as a depth image (also known as Monge surface):

𝑧 = 𝑓(𝑥, 𝑦)

pixel coordinates in image spacedepth at each pixel

• Unnormalized normal:

)𝑛 𝑥, 𝑦 =
𝑑𝑓
𝑑𝑥 ,

𝑑𝑓
𝑑𝑦 ,−1

𝑛(𝑥, 𝑦) = )𝑛 𝑥, 𝑦 / )𝑛 𝑥, 𝑦
• Actual normal:

𝑏(𝑥, 𝑦) = 𝑎 𝑥, 𝑦 𝑛 𝑥, 𝑦
• Pseudo-normal:

• Rearrange into 3xN matrix B.



Enforcing integrability
What does the integrability constraint correspond to?



Enforcing integrability
What does the integrability constraint correspond to?

• Differentiation order should not matter:

𝑑
𝑑𝑦

𝑑𝑓(𝑥, 𝑦)
𝑑𝑥

=
𝑑
𝑑𝑥
𝑑𝑓(𝑥, 𝑦)
𝑑𝑦

• Can you think of a way to express the above using pseudo-normals b?



Enforcing integrability
What does the integrability constraint correspond to?

• Differentiation order should not matter:

𝑑
𝑑𝑦

𝑑𝑓(𝑥, 𝑦)
𝑑𝑥

=
𝑑
𝑑𝑥
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𝑑
𝑑𝑦
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=
𝑑
𝑑𝑥
𝑏#(𝑥, 𝑦)
𝑏"(𝑥, 𝑦)



Enforcing integrability
What does the integrability constraint correspond to?

• Differentiation order should not matter:

• Can you think of a way to express the above using pseudo-normals b?

• Simplify to:

𝑏" 𝑥, 𝑦
𝑑𝑏# 𝑥, 𝑦

𝑑𝑦
− 𝑏#(𝑥, 𝑦)

𝑑𝑏"(𝑥, 𝑦)
𝑑𝑦

= 𝑏$ 𝑥, 𝑦
𝑑𝑏# 𝑥, 𝑦

𝑑𝑥
− 𝑏#(𝑥, 𝑦)

𝑑𝑏$(𝑥, 𝑦)
𝑑𝑥

𝑑
𝑑𝑦

𝑑𝑓(𝑥, 𝑦)
𝑑𝑥

=
𝑑
𝑑𝑥
𝑑𝑓(𝑥, 𝑦)
𝑑𝑦

𝑑
𝑑𝑦

𝑏!(𝑥, 𝑦)
𝑏"(𝑥, 𝑦)

=
𝑑
𝑑𝑥
𝑏#(𝑥, 𝑦)
𝑏"(𝑥, 𝑦)



Enforcing integrability
What does the integrability constraint correspond to?

• Differentiation order should not matter:

• Can you think of a way to express the above using pseudo-normals b?

• Simplify to:

𝑏" 𝑥, 𝑦
𝑑𝑏# 𝑥, 𝑦

𝑑𝑦
− 𝑏#(𝑥, 𝑦)

𝑑𝑏"(𝑥, 𝑦)
𝑑𝑦

= 𝑏$ 𝑥, 𝑦
𝑑𝑏# 𝑥, 𝑦

𝑑𝑥
− 𝑏#(𝑥, 𝑦)

𝑑𝑏$(𝑥, 𝑦)
𝑑𝑥

𝑑
𝑑𝑦

𝑑𝑓(𝑥, 𝑦)
𝑑𝑥

=
𝑑
𝑑𝑥
𝑑𝑓(𝑥, 𝑦)
𝑑𝑦

𝑑
𝑑𝑦

𝑏!(𝑥, 𝑦)
𝑏"(𝑥, 𝑦)

=
𝑑
𝑑𝑥
𝑏#(𝑥, 𝑦)
𝑏"(𝑥, 𝑦)

• If Be is the pseudo-normal matrix we get from SVD, then find the 3x3 
transform D such that B=D⋅Be is the closest to satisfying integrability in the 
least-squares sense.



Enforcing integrability
Does enforcing integrability remove all ambiguities?



Generalized Bas-relief ambiguity
If B is integrable, then:
• B’=G-T⋅B is also integrable for all G of the form (𝜆 ≠	0)

𝐺 =
1 0 0
0 1 0
𝜇 𝜈 𝜆

• Combined with transformed lights S’=G⋅S, the transformed pseudonormals
produce the same images as the original pseudonormals.

• This ambiguity cannot be removed using shadows.

• This ambiguity can be removed using interreflections or additional assumptions.

This ambiguity is known as the generalized bas-relief ambiguity.



Generalized Bas-relief ambiguity
When 𝜇 = 𝜈 = 0, G is equivalent to the transformation employed by relief sculptures.

Otherwise, includes shearing.When 𝜇 = 𝜈 = 0 and 𝜆 =	+-1, top/down ambiguity.

4

How Do We Do It?
• Humans have to make assumptions about illumination: 

bump (left) is perceived as hole (right) when upside down

Illumination direction is unknown. It is assumed to come from above



What assumptions have we made for all this?



What assumptions have we made for all this?

•Lambertian BRDF

•Directional lighting

•Orthographic camera

•No interreflections or scattering



Shape independent of BRDF via reciprocity:
“Helmholtz Stereopsis”

[Zickler et al., 2002]



Shape from shading



Can we reconstruct shape 
from one image?



Single-lighting is ambiguous
ASSUMPTION 1:

LAMBERTIAN
ASSUMPTION 2:

DIRECTIONAL LIGHTING

[Prados, 2004]



Stereographic Projection
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Image Irradiance Constraint

• Image irradiance should match the reflectance map

( ) ( )( ) dxdygfRyxIei
2

image

,,∫∫ −=

Minimize

(minimize errors in image irradiance in the image)



Smoothness Constraint

• Used to constrain shape-from-shading
• Relates orientations (f,g) of neighboring surface points
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Shape-from-Shading

• Find surface orientations (f,g) at all image points that 
minimize

is eee λ+=

smoothness
constraint

weight

image irradiance
error

( ) ( ) ( ) ( )( ) dxdygfRyxIggffe yxyx

2

image

2222 ,,∫∫ −++++= λ

Minimize



Numerical Shape-from-Shading

• Smoothness error at image point (i,j)
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si, j =
1
4

f i+1, j − f i, j( )
2

+ fi, j+1 − f i, j( )
2

+ gi+1, j − gi, j( )
2

+ gi, j+1 − gi, j( )
2( )

Of course you can consider more neighbors (smoother results)

• Image irradiance error at image point (i,j)
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Find           and           that minimize
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(Ikeuchi & Horn 89)



Results



Results



More modern results
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