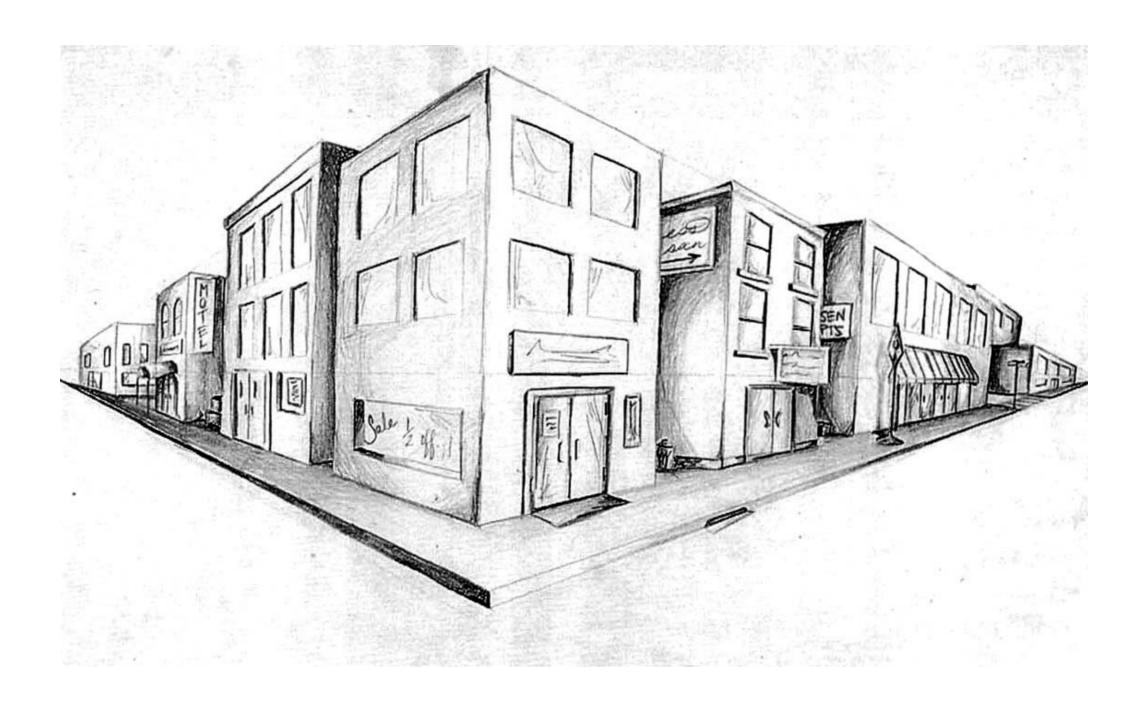
## Detecting corners



16-385 Computer Vision Spring 2024, Lecture 5

## Overview of today's lecture

- Why detect corners?
- Visualizing quadratics.
- Harris corner detector.
- Multi-scale detection.
- Multi-scale blob detection.

### Slide credits

Most of these slides were adapted from:

Kris Kitani (15-463, Fall 2016).

Some slides were inspired or taken from:

- Fredo Durand (MIT).
- James Hays (Georgia Tech).

## Why detect corners?

# Why detect corners?

Image alignment (homography, fundamental matrix)

3D reconstruction

Motion tracking

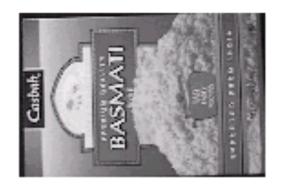
Object recognition

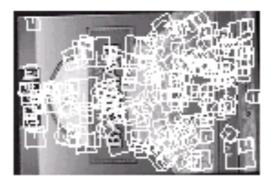
Indexing and database retrieval

Robot navigation

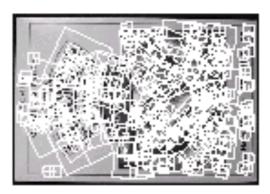
### Planar object instance recognition

Database of planar objects

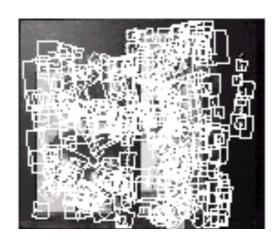












Instance recognition





# 3D object recognition

Database of 3D objects

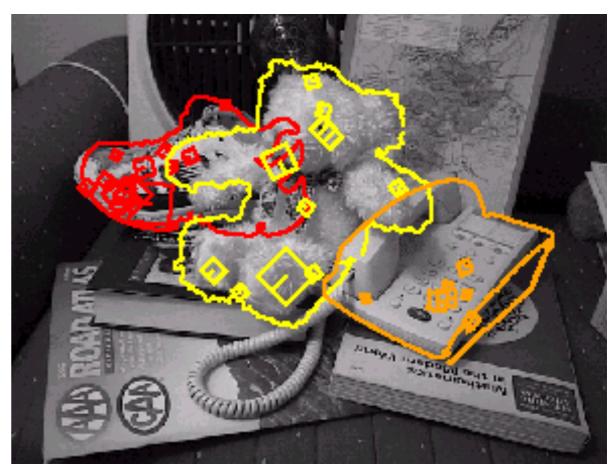


3D objects recognition



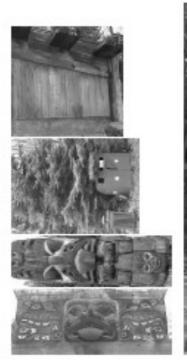




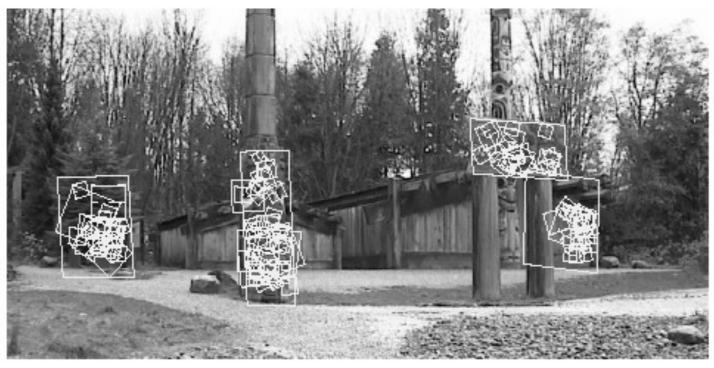


Recognition under occlusion

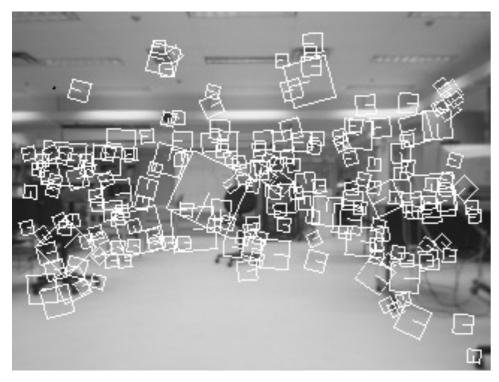
# Location Recognition







## Robot Localization



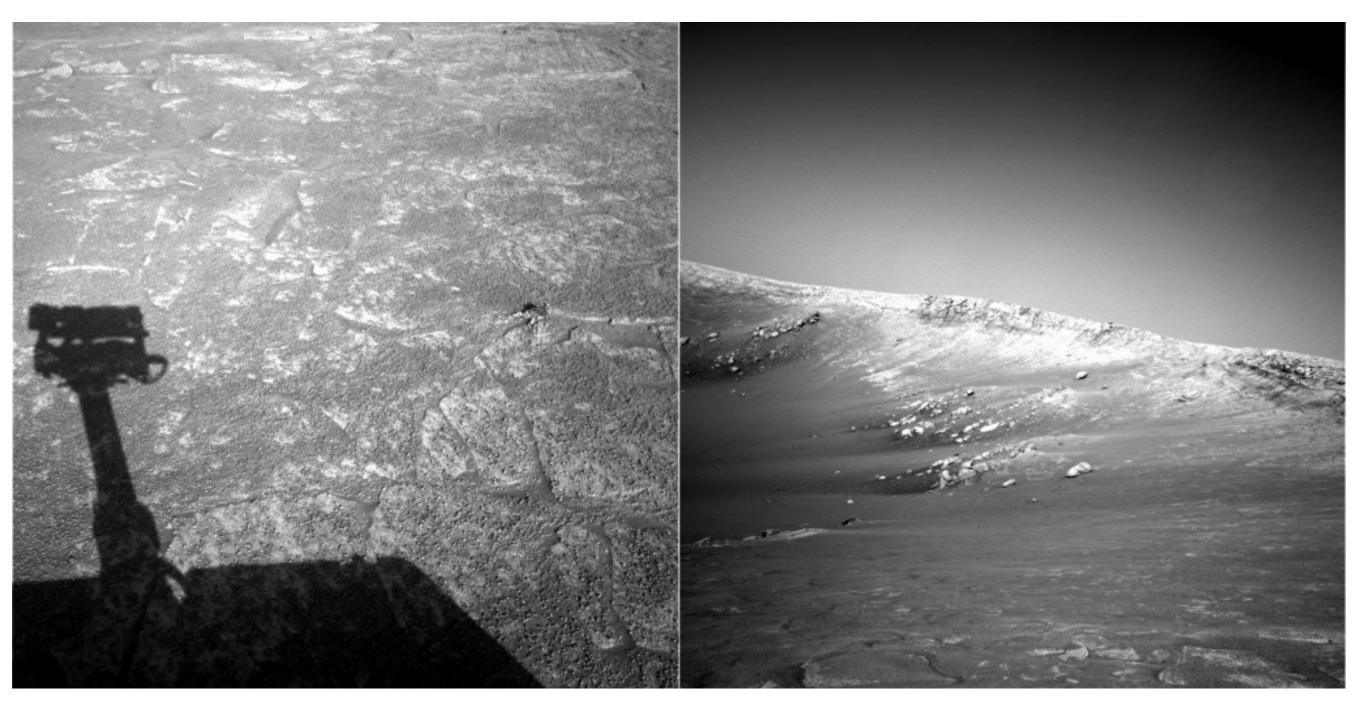




# Image matching

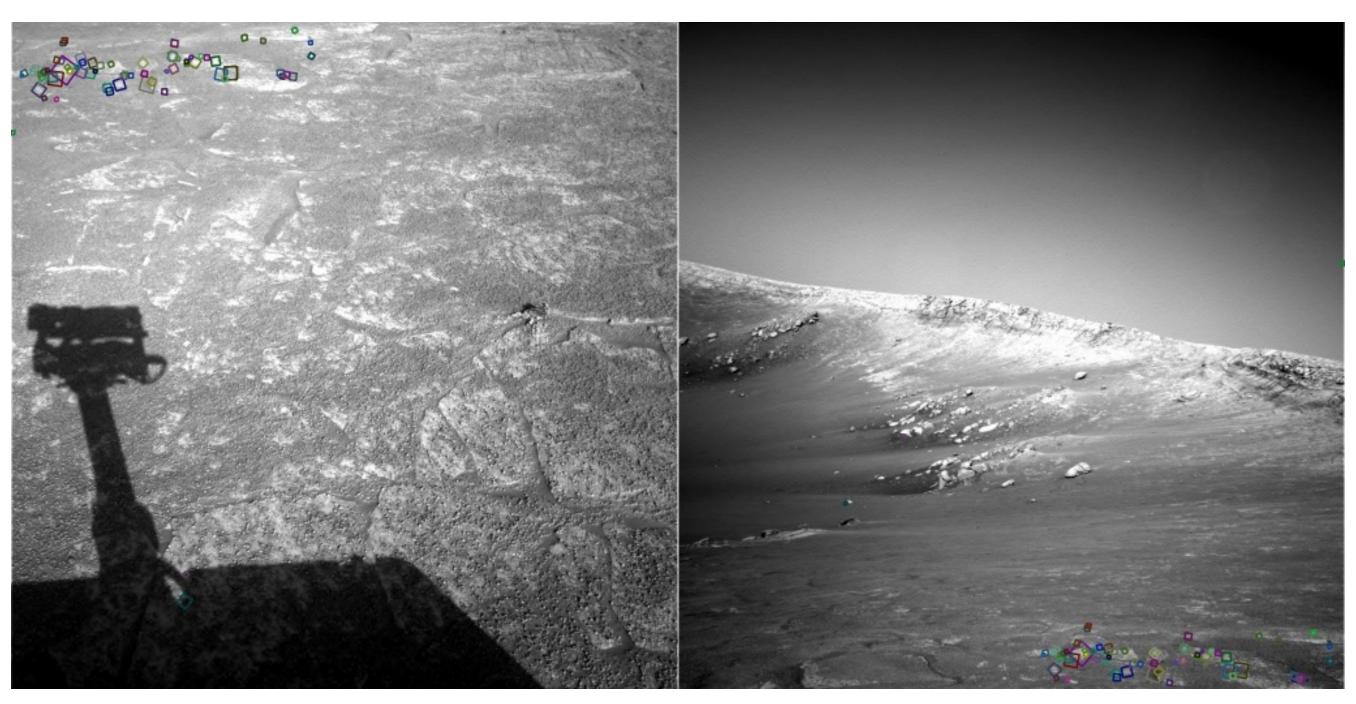




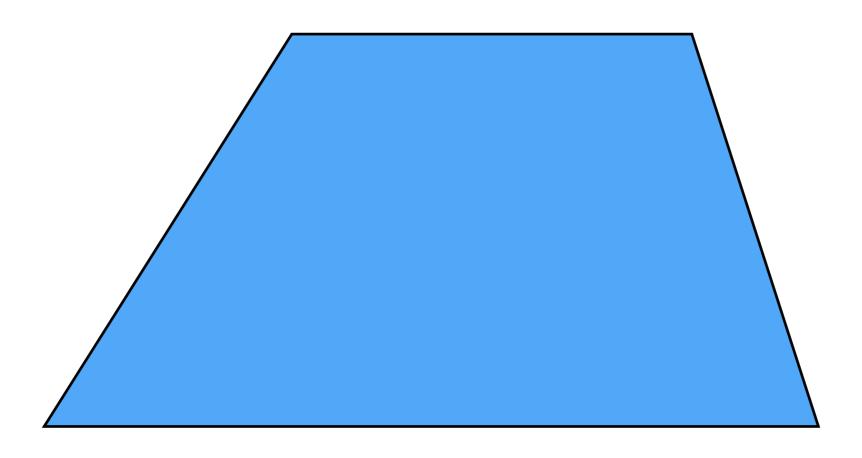


NASA Mars Rover images

### Where are the corresponding points?

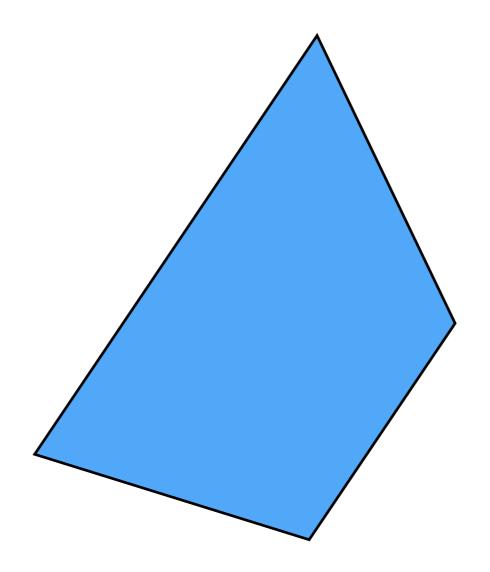


NASA Mars Rover images



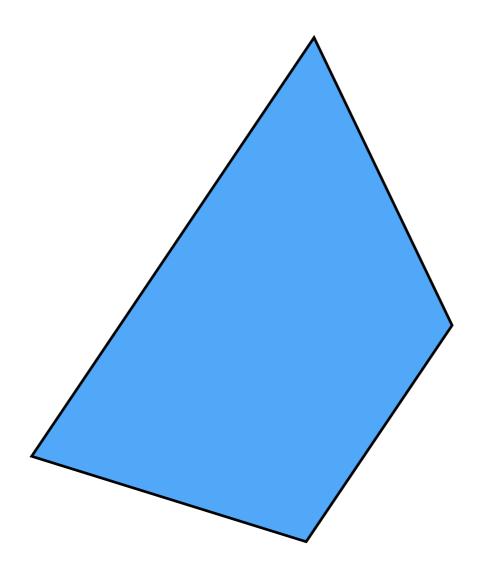
Pick a point in the image. Find it again in the next image.

What type of feature would you select?



Pick a point in the image. Find it again in the next image.

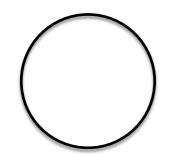
What type of feature would you select?



Pick a point in the image. Find it again in the next image.

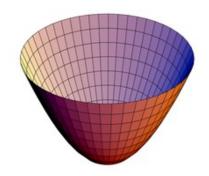
What type of feature would you select? a corner

# Visualizing quadratics



#### Equation of a circle

$$1 = x^2 + y^2$$



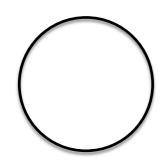
Equation of a 'bowl' (paraboloid)

$$f(x,y) = x^2 + y^2$$

If you slice the bowl at

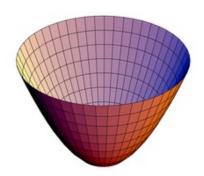
$$f(x,y) = 1$$

what do you get?



#### Equation of a circle

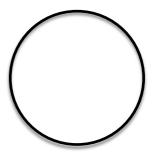
$$1 = x^2 + y^2$$



Equation of a 'bowl' (paraboloid)

$$f(x,y) = x^2 + y^2$$

If you slice the bowl at f(x,y) = 1 what do you get?

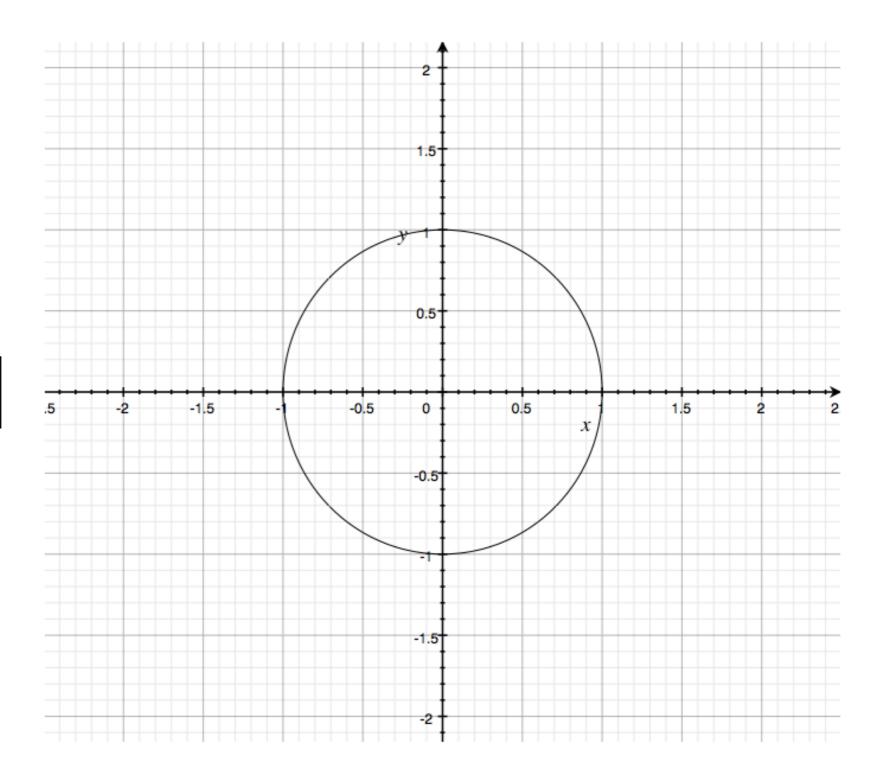


$$f(x,y) = x^2 + y^2$$

can be written in matrix form like this...

$$f(x,y) = \left[ egin{array}{cccc} x & y \end{array} 
ight] \left[ egin{array}{cccc} 1 & 0 \ 0 & 1 \end{array} 
ight] \left[ egin{array}{cccc} x \ y \end{array} 
ight]$$

$$f(x,y) = \left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$
 'sliced at 1'



### What happens if you **increase** coefficient on **x**?

$$f(x,y) = \left[ egin{array}{ccc} x & y \end{array} 
ight] \left[ egin{array}{ccc} 2 & 0 \ 0 & 1 \end{array} 
ight] \left[ egin{array}{ccc} x \ y \end{array} 
ight]$$

### What happens if you **increase** coefficient on **x**?

$$f(x,y) = \left[ egin{array}{ccc} x & y \end{array} 
ight] \left[ egin{array}{ccc} 2 & 0 \ 0 & 1 \end{array} 
ight] \left[ egin{array}{ccc} x \ y \end{array} 
ight] \, rac{1}{5}$$

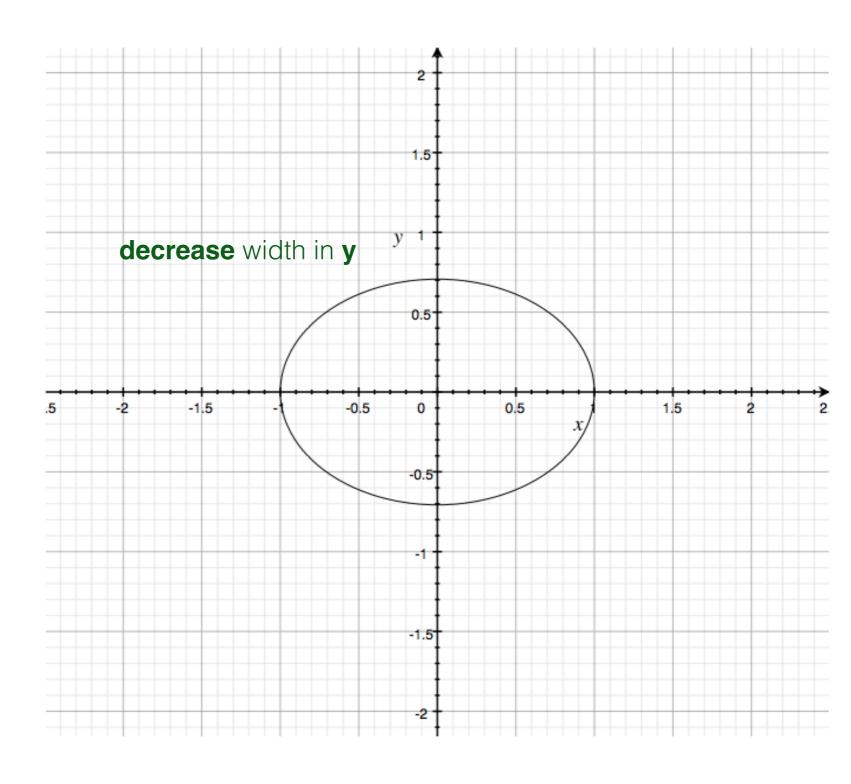


### What happens if you **increase** coefficient on **y**?

$$f(x,y) = \left[ egin{array}{ccc} x & y \end{array} 
ight] \left[ egin{array}{ccc} 1 & 0 \ 0 & 2 \end{array} 
ight] \left[ egin{array}{ccc} x \ y \end{array} 
ight]$$

### What happens if you **increase** coefficient on **y**?

$$f(x,y) = \left[ egin{array}{ccc} x & y \end{array} 
ight] \left[ egin{array}{ccc} 1 & 0 \ 0 & 2 \end{array} 
ight] \left[ egin{array}{ccc} x \ y \end{array} 
ight]$$



$$f(x,y) = x^2 + y^2$$

can be written in matrix form like this...

$$f(x,y) = \left[ \begin{array}{cc} x & y \end{array} \right] \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \left[ \begin{array}{cc} x \\ y \end{array} \right]$$

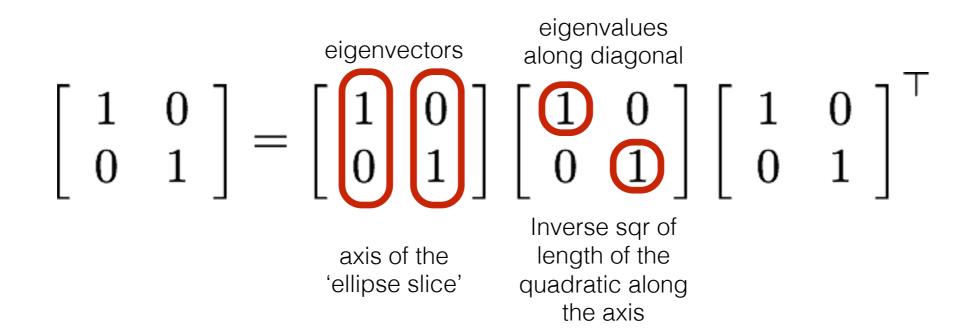
What's the shape? What are the eigenvectors? What are the eigenvalues?

$$f(x,y) = x^2 + y^2$$

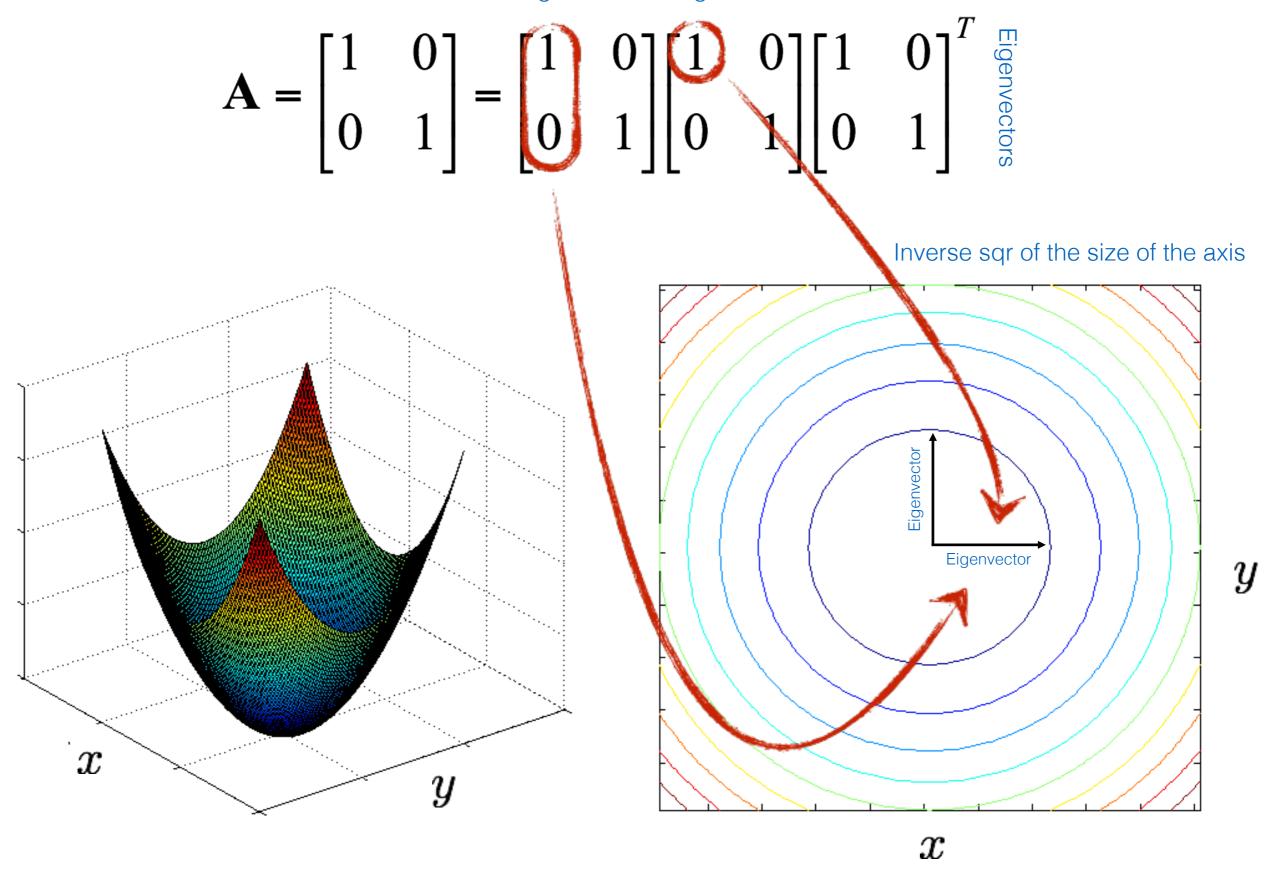
can be written in matrix form like this...

$$f(x,y) = \left[ \begin{array}{cc} x & y \end{array} \right] \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \left[ \begin{array}{cc} x \\ y \end{array} \right]$$

#### **Result of Singular Value Decomposition (SVD)**



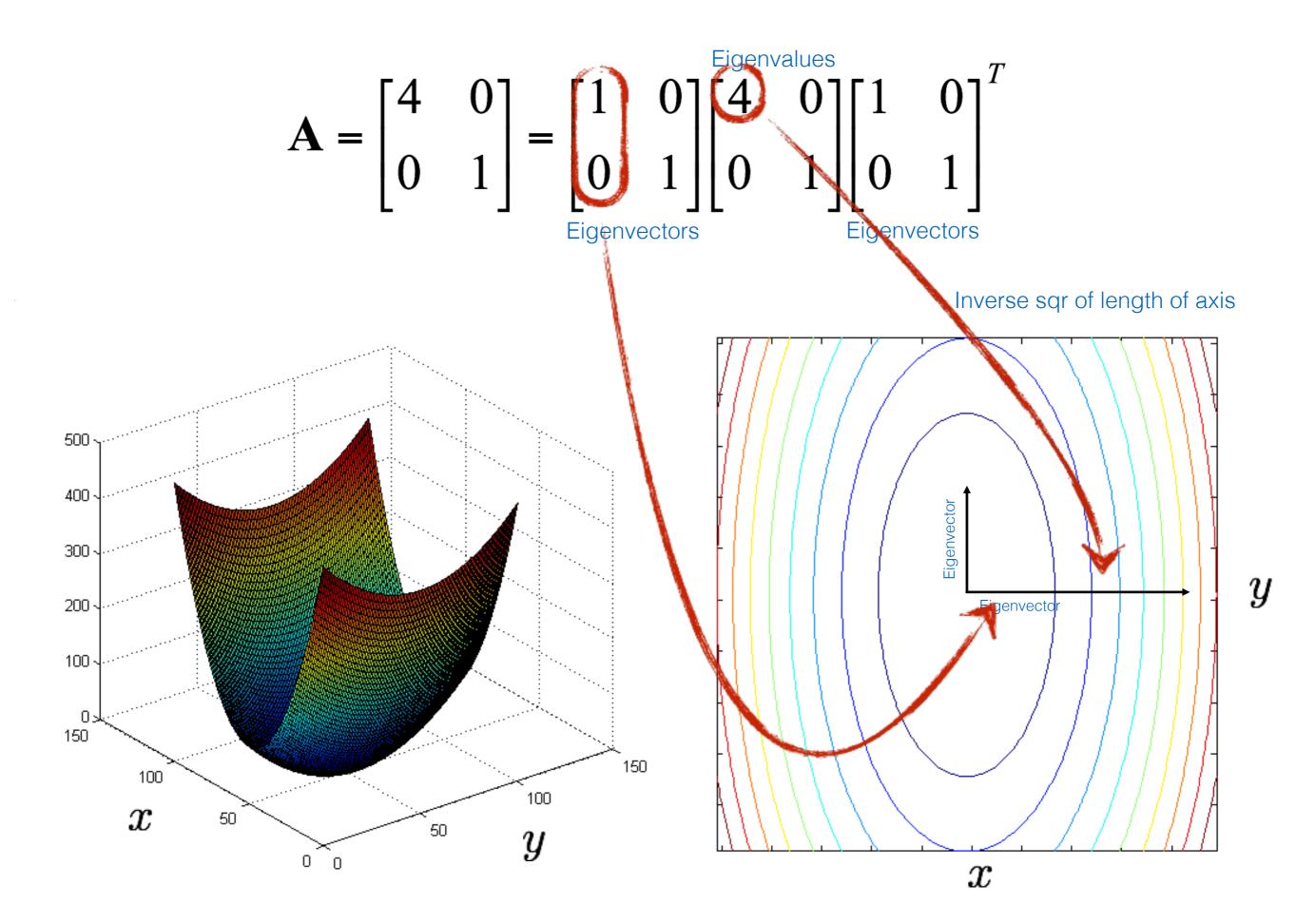
#### Eigenvectors Eigenvalues



Recall:

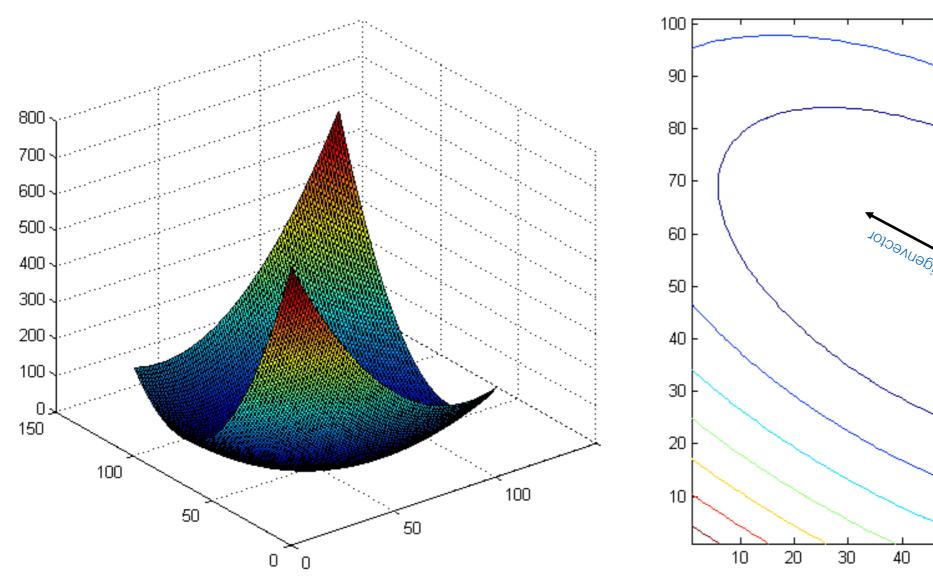
you can smash this bowl in the y direction

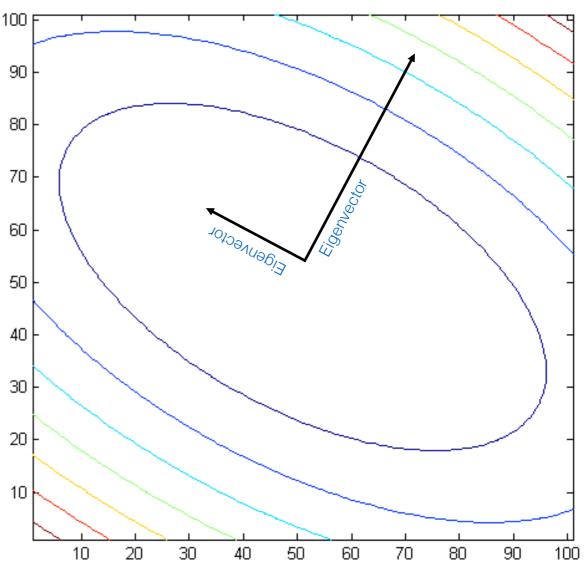
you can smash this bowl in the x direction



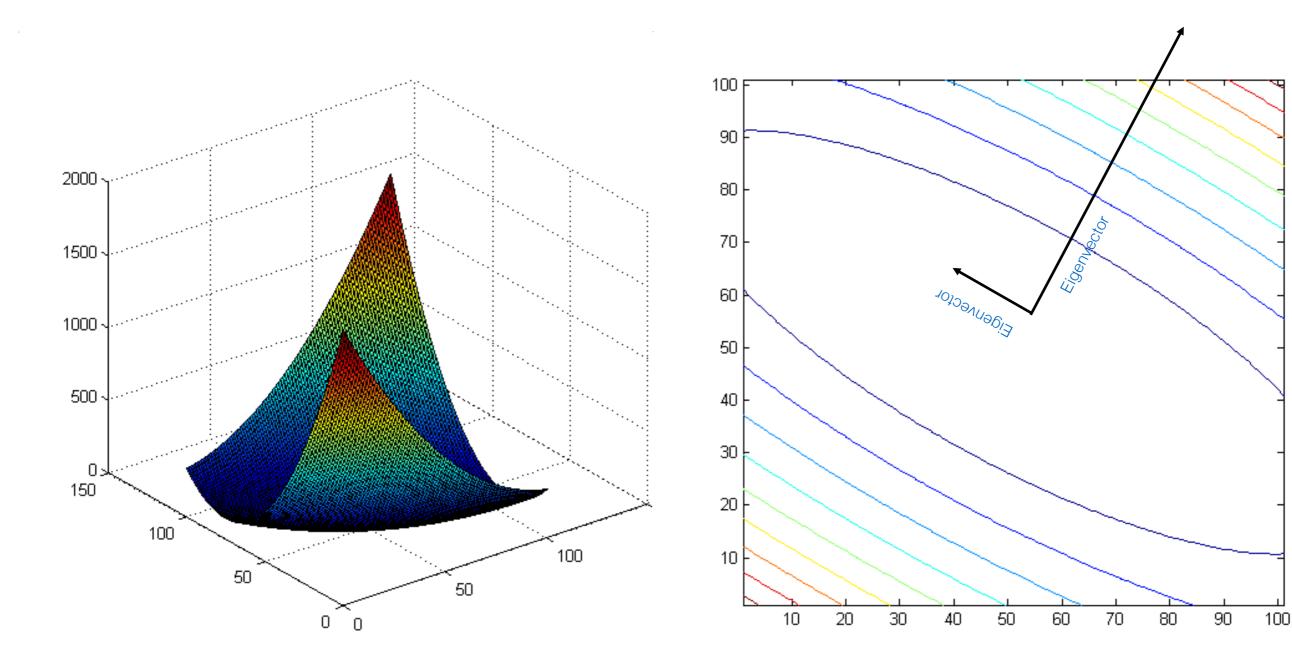
#### Eigenvalues

$$\mathbf{A} = \begin{bmatrix} 3.25 & 1.30 \\ 1.30 & 1.75 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$
Eigenvectors





$$\mathbf{A} = \begin{bmatrix} 7.75 & 3.90 \\ 3.90 & 3.25 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$
Eigenvectors



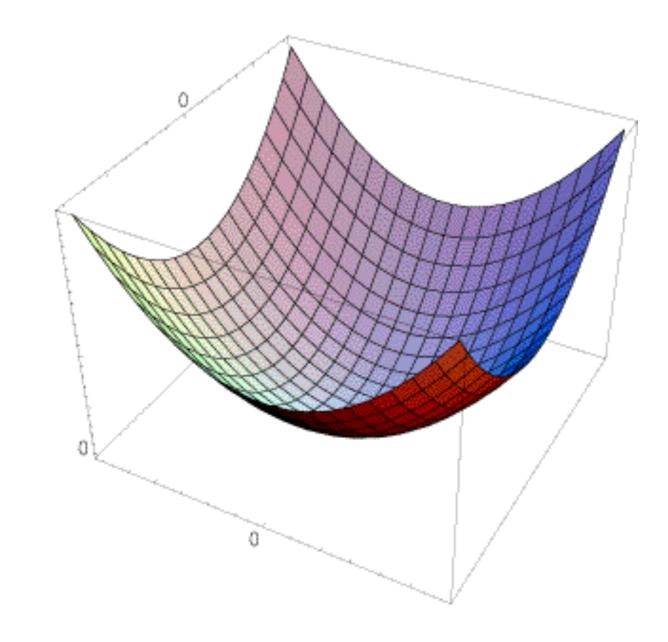
We will need this to understand the...

### Error function for Harris Corners

The surface E(u,v) is locally approximated by a quadratic form

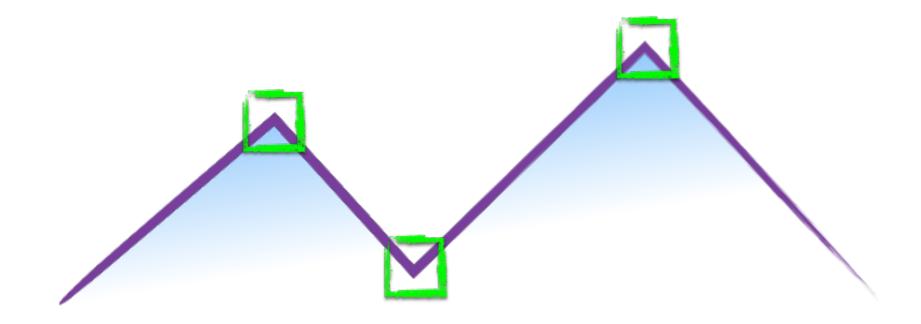
$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$



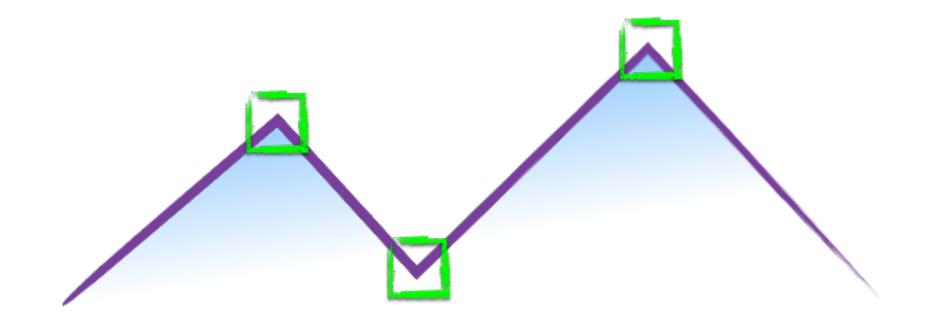
## Harris corner detector

## How do you find a corner?



## How do you find a corner?

[Moravec 1980]

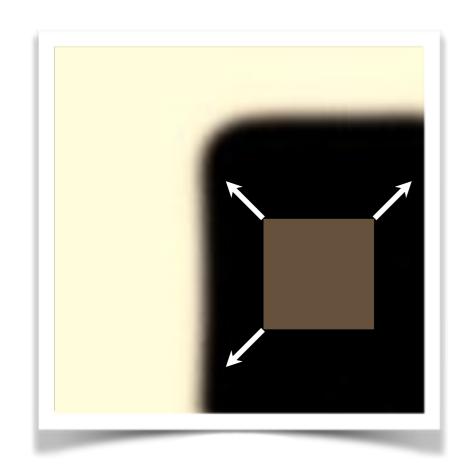


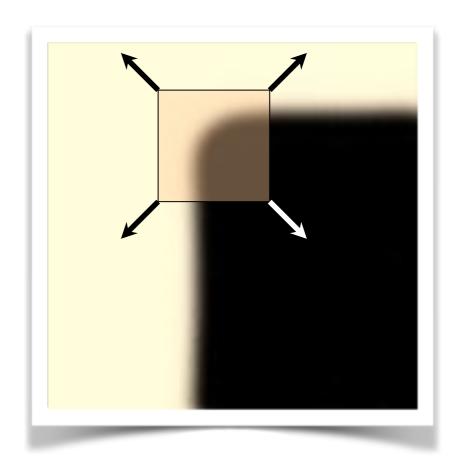
Easily recognized by looking through a small window

Shifting the window should give large change in intensity

#### Easily recognized by looking through a small window

#### Shifting the window should give large change in intensity





"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

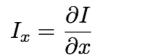
### Design a program to detect corners

(hint: use image gradients)

## Finding corners

(a.k.a. PCA)

- 1.Compute image gradients over small region
- 2.Subtract mean from each image gradient
- 3.Compute the covariance matrix
- 4.Compute eigenvectors and eigenvalues
- 5.Use threshold on eigenvalues to detect corners





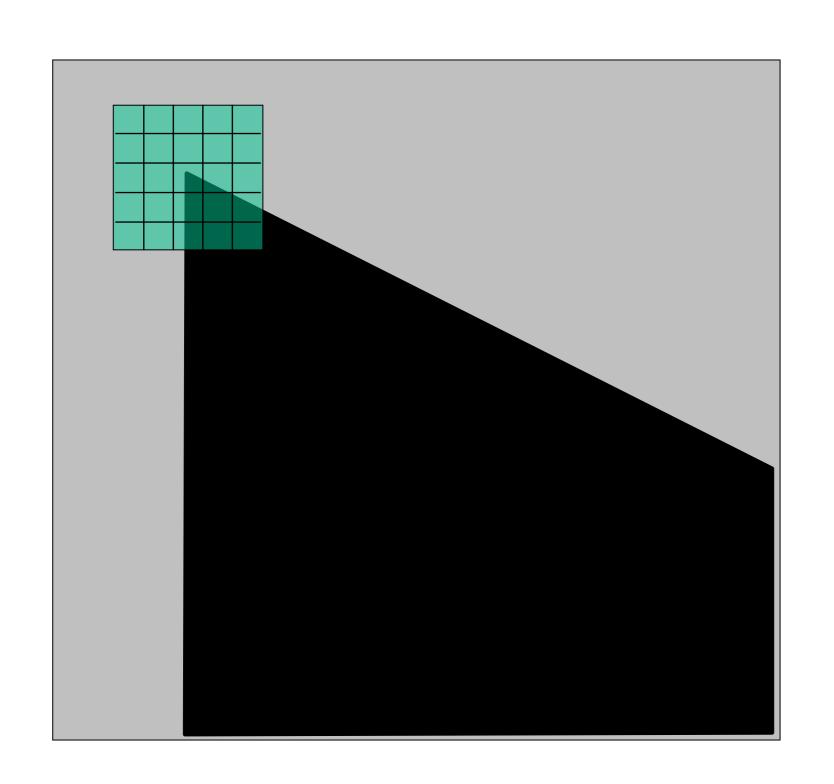
$$I_y = \frac{\partial I}{\partial y}$$



$$\left[\begin{array}{ccc} \sum\limits_{p \in P} I_x I_x & \sum\limits_{p \in P} I_x I_y \\ \sum\limits_{p \in P} I_y I_x & \sum\limits_{p \in P} I_y I_y \end{array}\right]$$

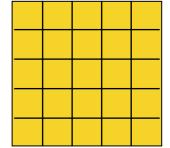
1. Compute image gradients over a small region (not just a single pixel)

### 1. Compute image gradients over a small region (not just a single pixel)



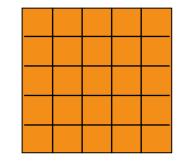
array of x gradients

$$I_x = \frac{\partial I}{\partial x}$$

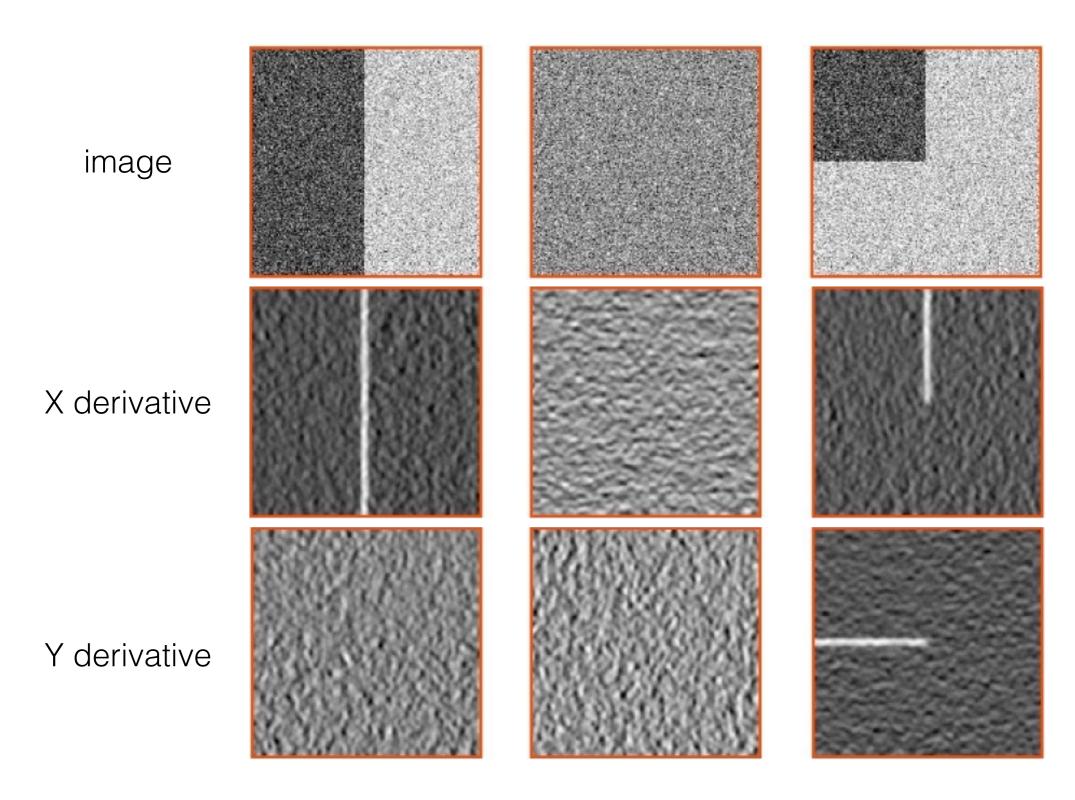


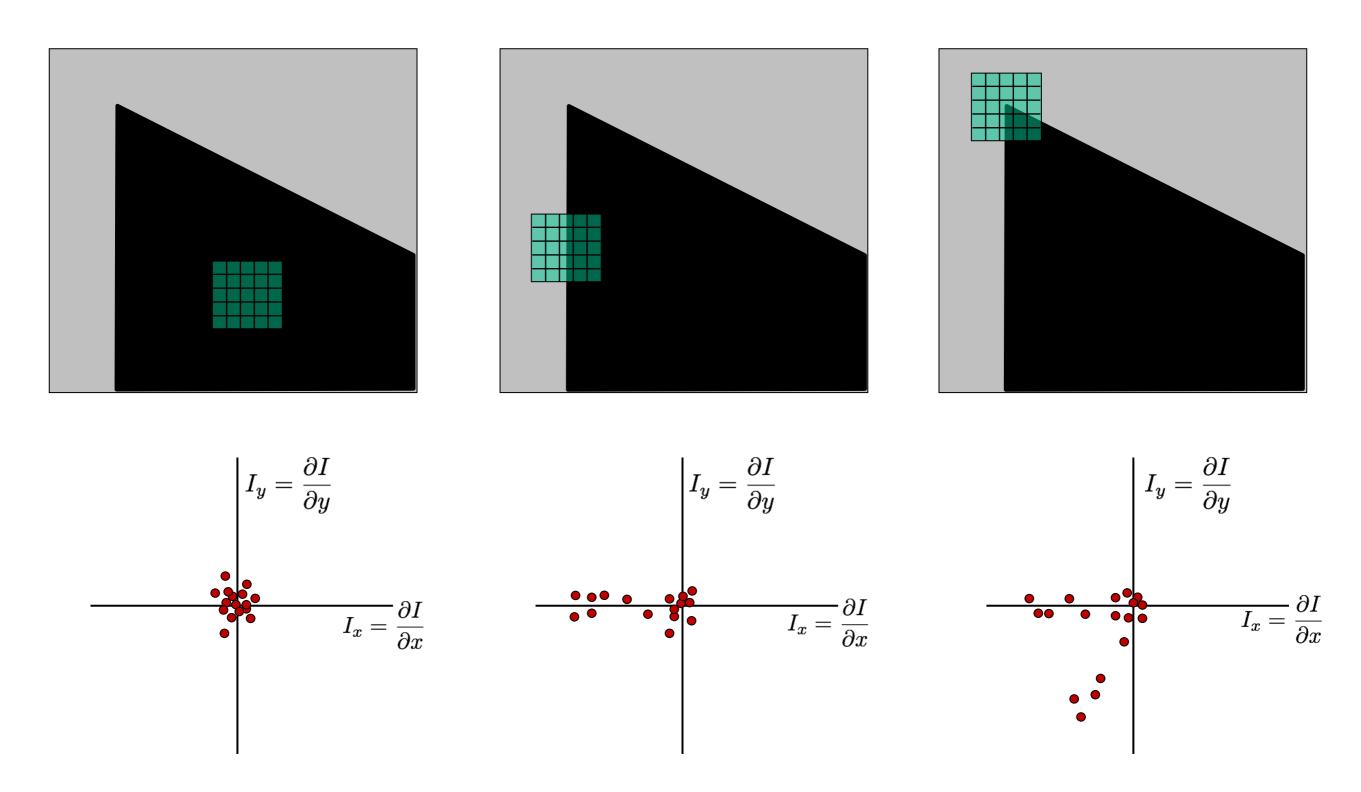
array of y gradients

$$I_y = \frac{\partial I}{\partial y}$$

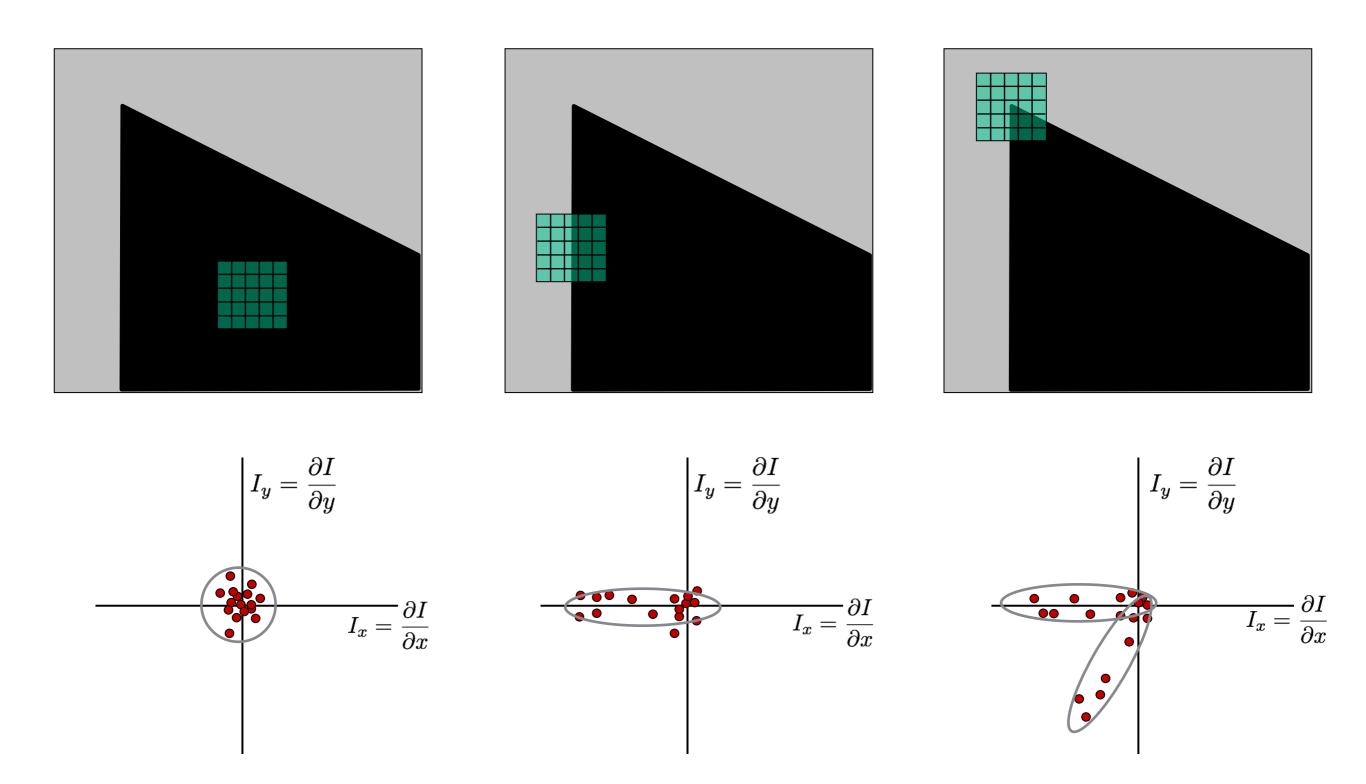


### visualization of gradients

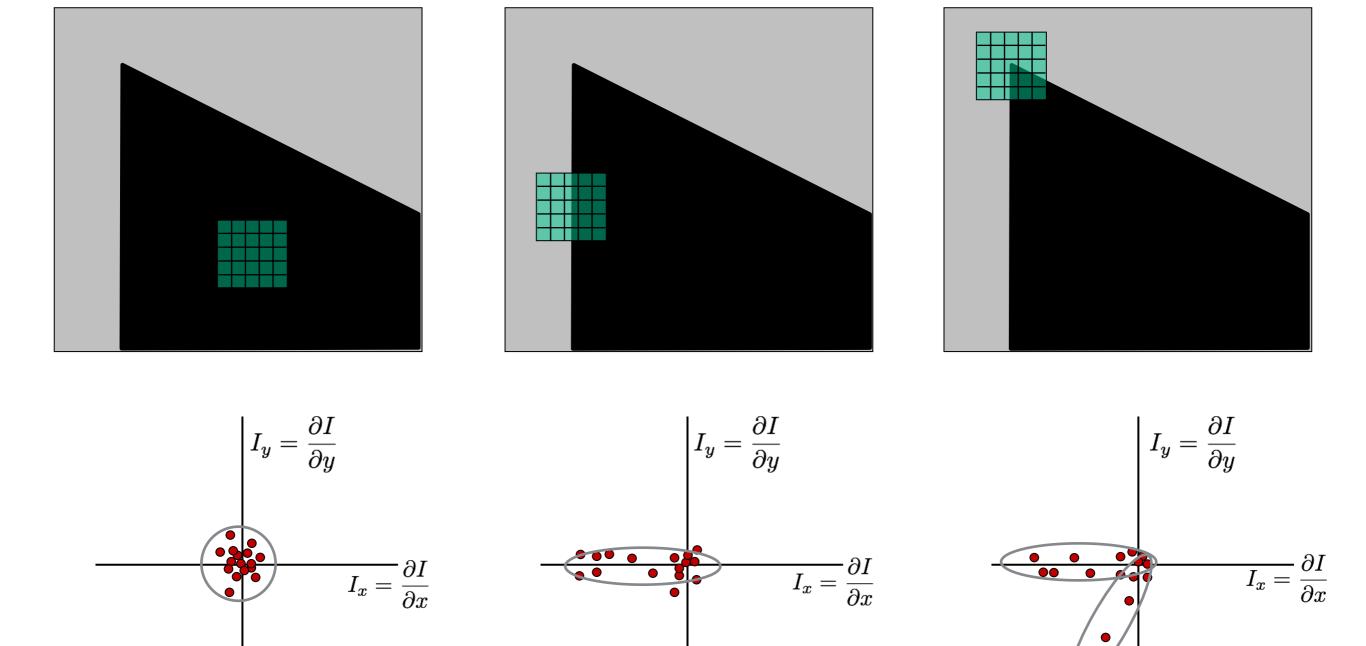




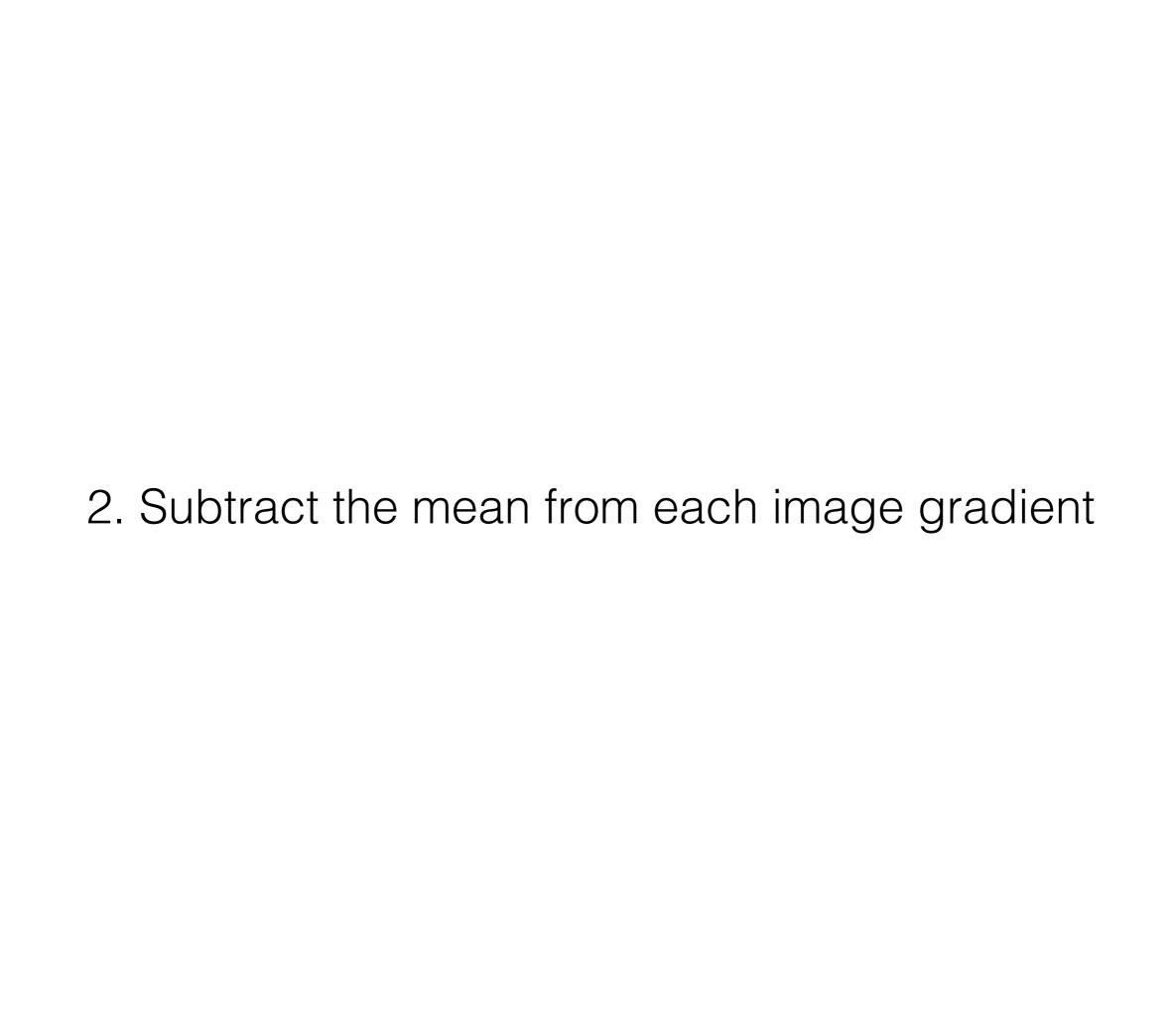
What does the distribution tell you about the region?



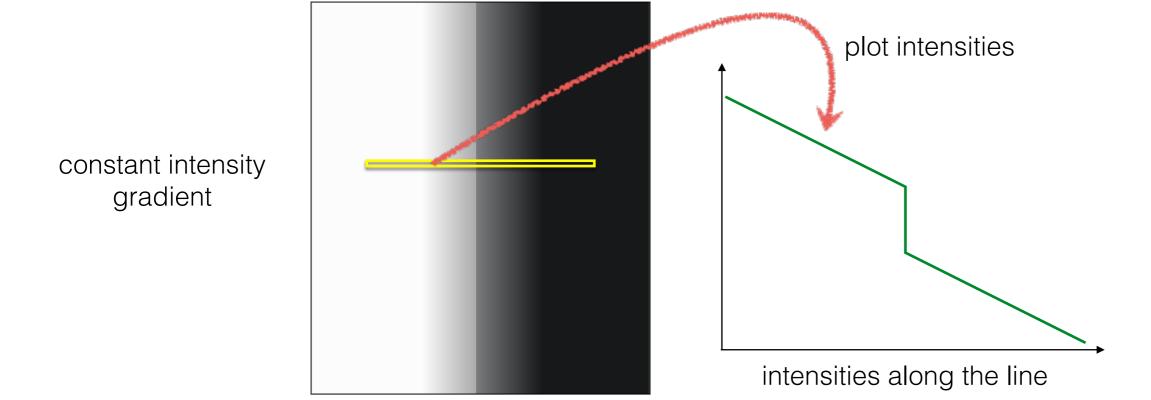
distribution reveals edge orientation and magnitude



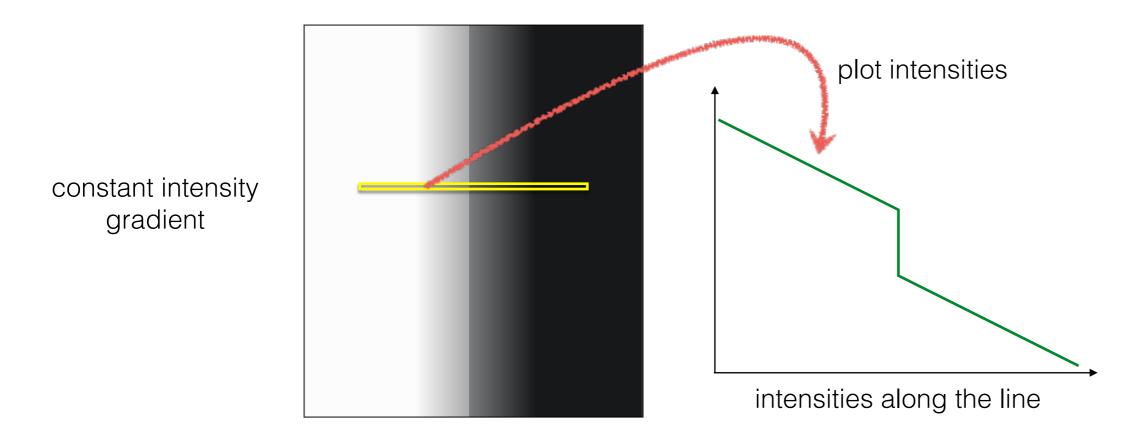
How do you quantify orientation and magnitude?

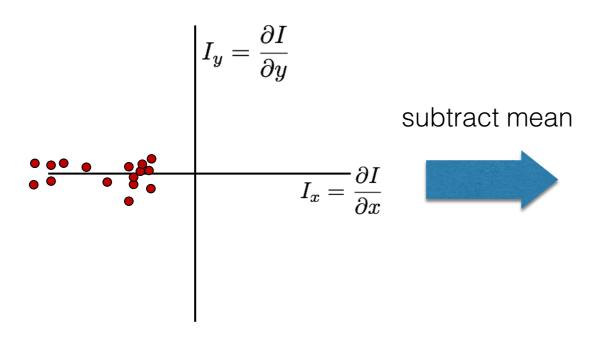


#### 2. Subtract the mean from each image gradient



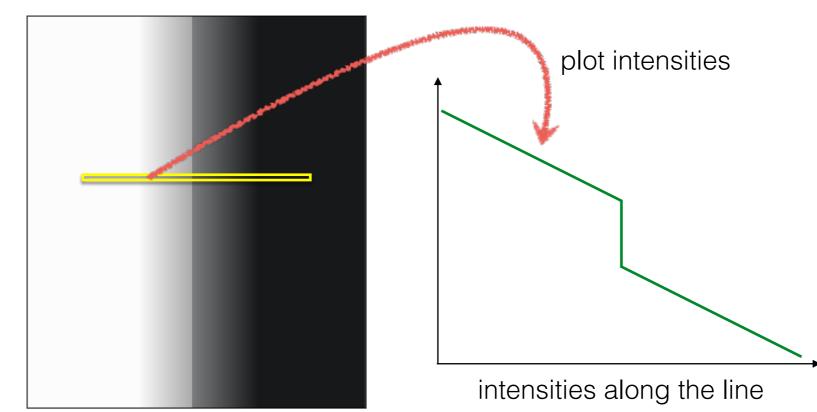
#### 2. Subtract the mean from each image gradient





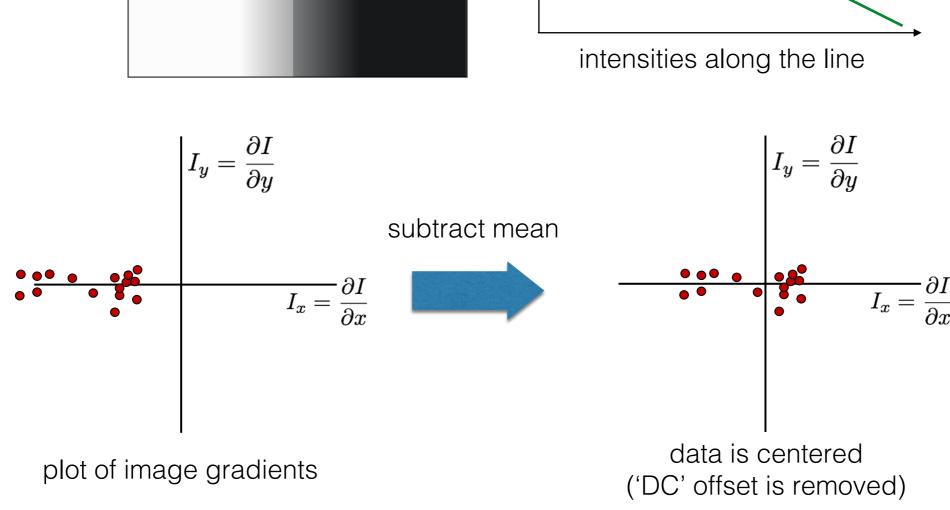
plot of image gradients

#### 2. Subtract the mean from each image gradient



constant intensity

gradient



3. Compute the covariance matrix

#### 3. Compute the covariance matrix

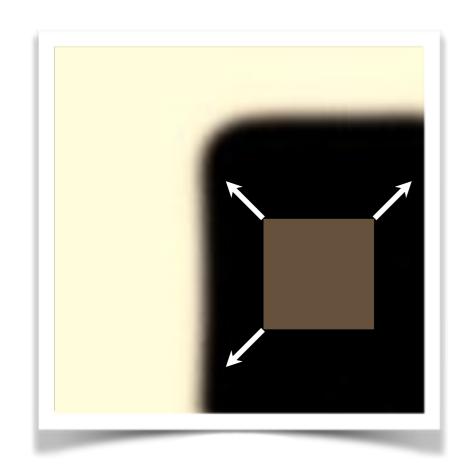
$$\left[\begin{array}{ccc} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \\ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{array}\right]$$

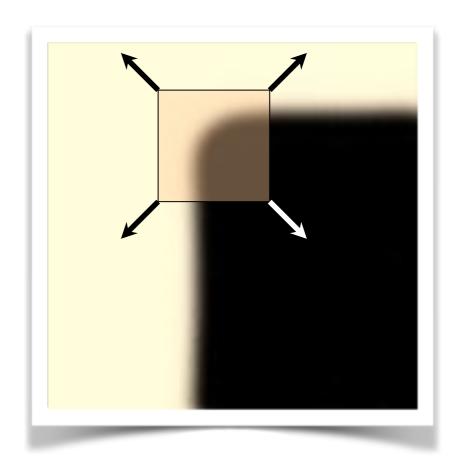
$$I_x = \frac{\partial I}{\partial x}$$
  $I_y = \frac{\partial I}{\partial y}$   $\sum_{p \in P} I_x I_y = \operatorname{Sum}($   $\star$  array of x gradients  $I_y = \frac{\partial I}{\partial y}$ 

Where does this covariance matrix come from?

#### Easily recognized by looking through a small window

#### Shifting the window should give large change in intensity





"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Some mathematical background...

### Error function

Change of intensity for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \Big[ I(x+u,y+v) - I(x,y) \Big]^2$$
Error Window Shifted Intensity Intensity

Window function w(x,y) = 01 in window, 0 outside Gaussian

### Error function approximation

Change of intensity for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

First-order Taylor expansion of I(x,y) about (0,0) (bilinear approximation for small shifts)

### Bilinear approximation

For small shifts [u,v] we have a 'bilinear approximation':

Change in appearance for a shift [u,v]

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

'second moment' matrix 'structure tensor'

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

By computing the gradient covariance matrix...

$$\left[\begin{array}{ccc} \sum\limits_{p\in P}I_xI_x & \sum\limits_{p\in P}I_xI_y \\ \sum\limits_{p\in P}I_yI_x & \sum\limits_{p\in P}I_yI_y \end{array}\right]$$

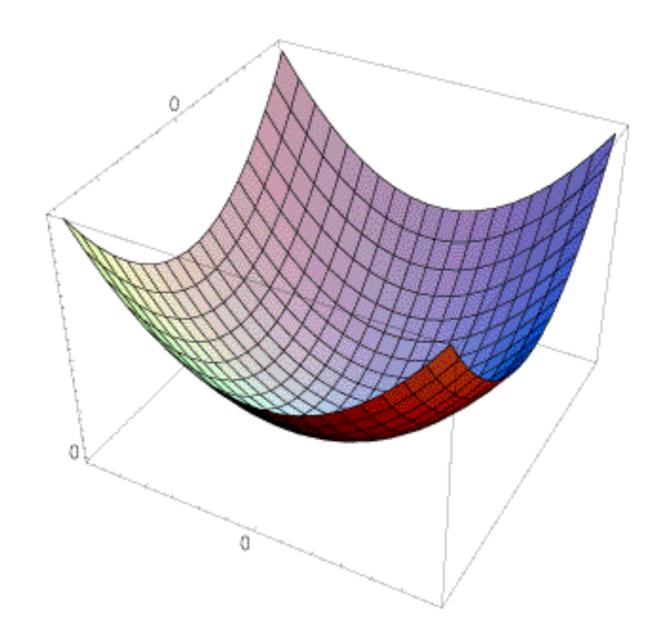
we are fitting a quadratic to the gradients over a small image region

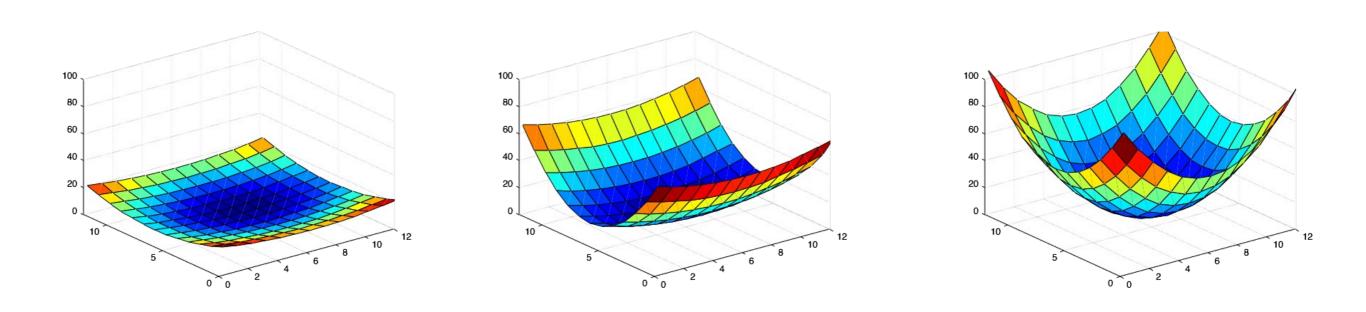
### Visualization of a quadratic

The surface E(u,v) is locally approximated by a quadratic form

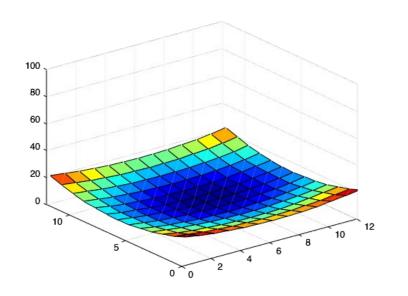
$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

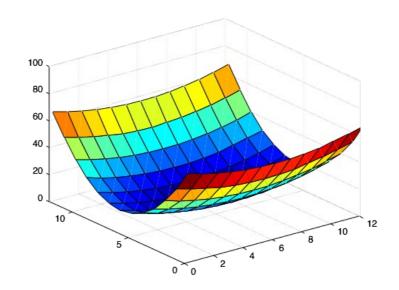
$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

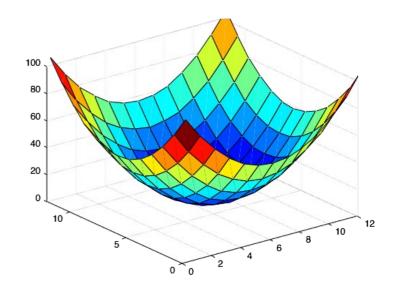




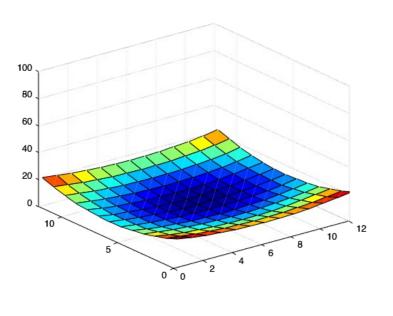
What kind of image patch do these surfaces represent?



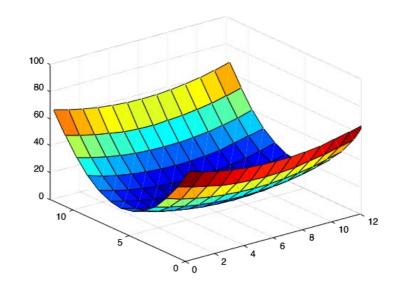




flat

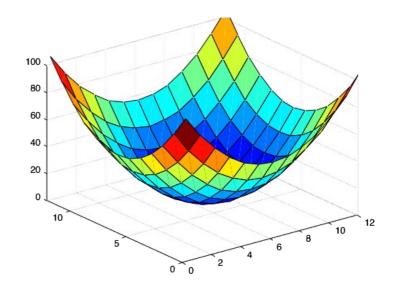


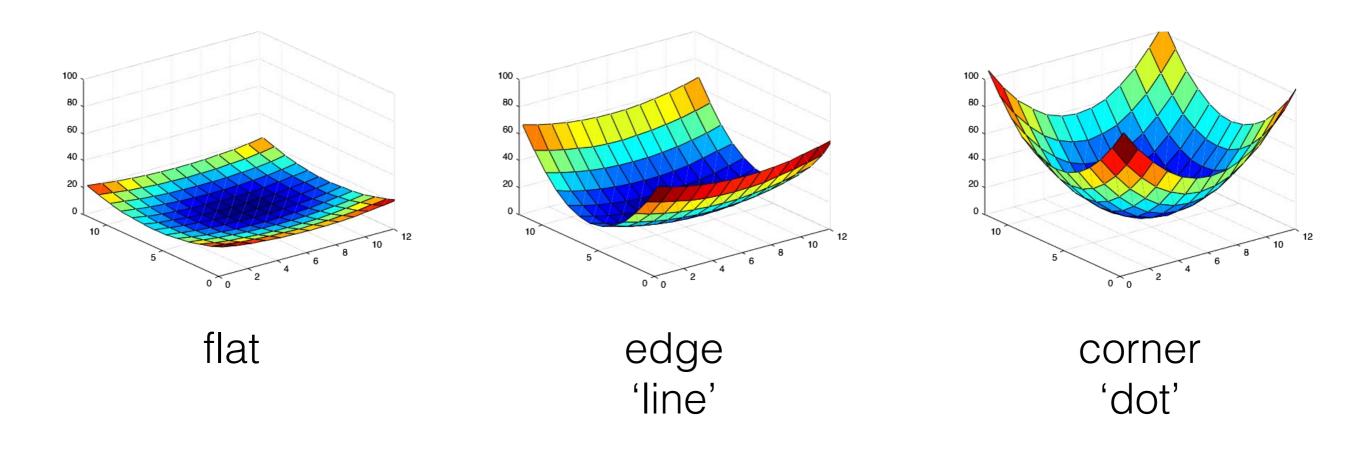
flat



edge

'line'

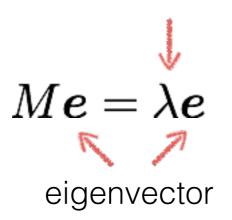




eigenvalue



eigenvalue



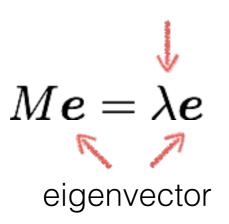
$$(M - \lambda I)\mathbf{e} = 0$$

### 1. Compute the determinant of

 $M - \lambda I$ 

(returns a polynomial)

eigenvalue



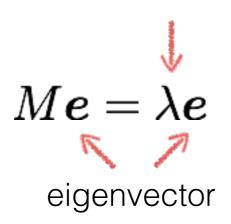
$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of (returns a polynomial)

$$M - \lambda I$$

2. Find the roots of polynomial  $\det(M-\lambda I)=0$ 

eigenvalue



$$(M - \lambda I)\mathbf{e} = 0$$

1. Compute the determinant of (returns a polynomial)

$$M - \lambda I$$

2. Find the roots of polynomial (returns eigenvalues)

$$\det(M - \lambda I) = 0$$

3. For each eigenvalue, solve (returns eigenvectors)

$$(M - \lambda I)\mathbf{e} = 0$$

# eig(M)

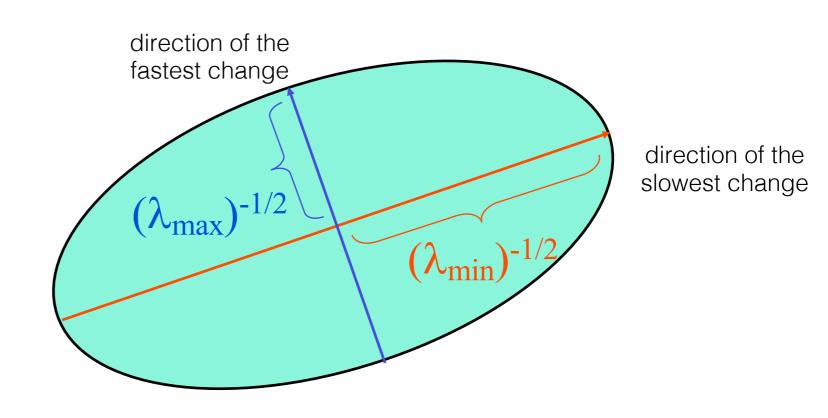
### Visualization as an ellipse

Since M is symmetric, we have  $M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$ 

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$



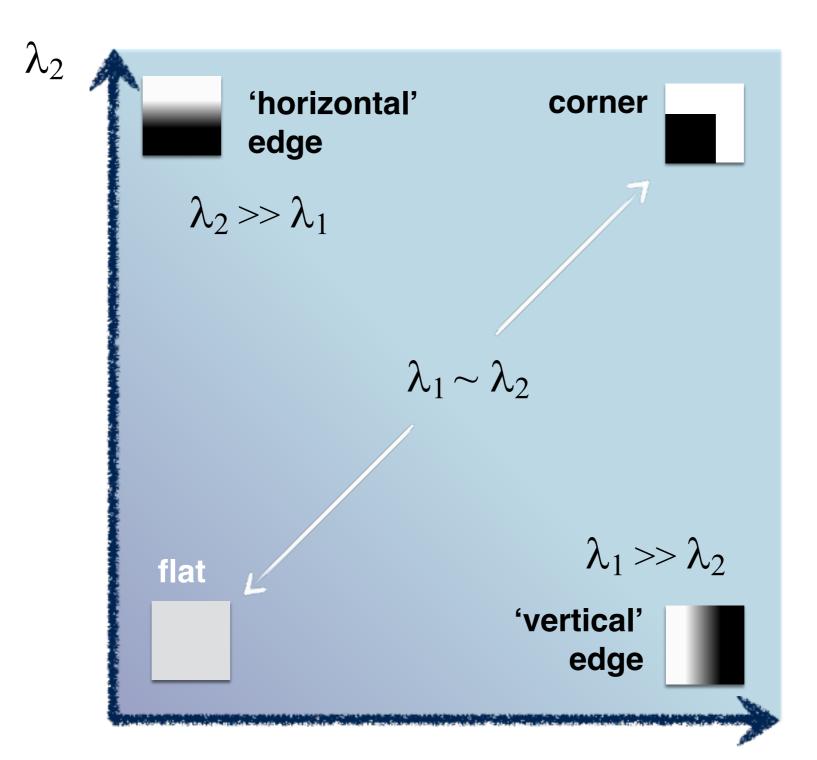
$$\lambda_2 >> \lambda_1$$

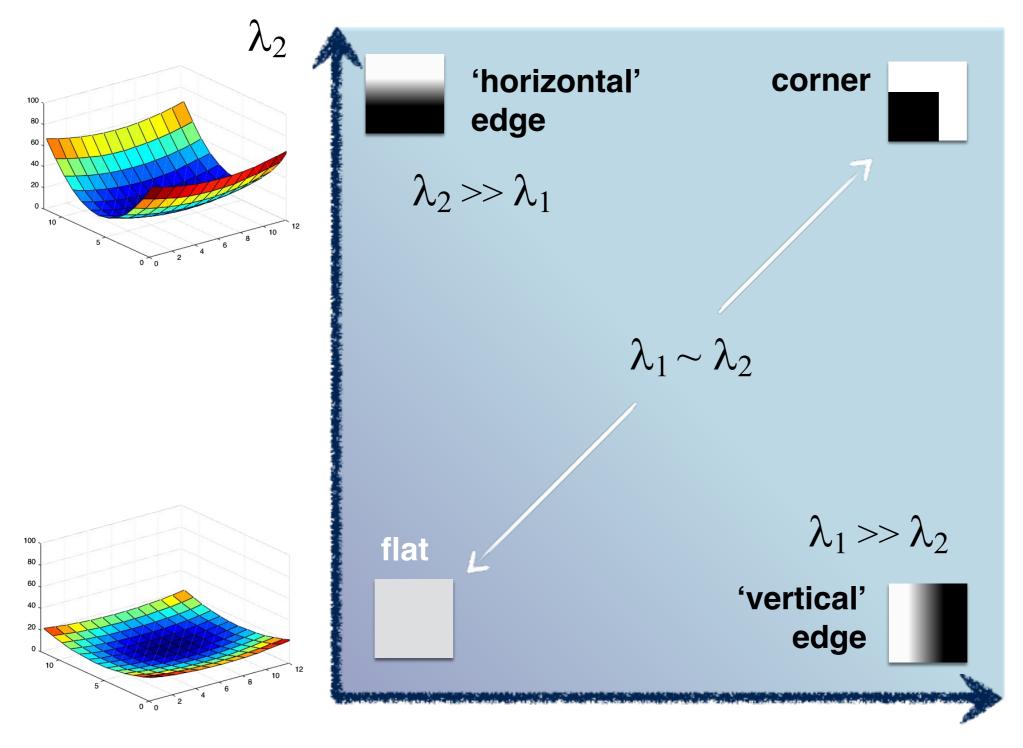
What kind of image patch does each region represent?

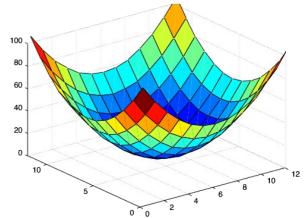
$$\lambda_1 \sim 0$$
 $\lambda_2 \sim 0$ 

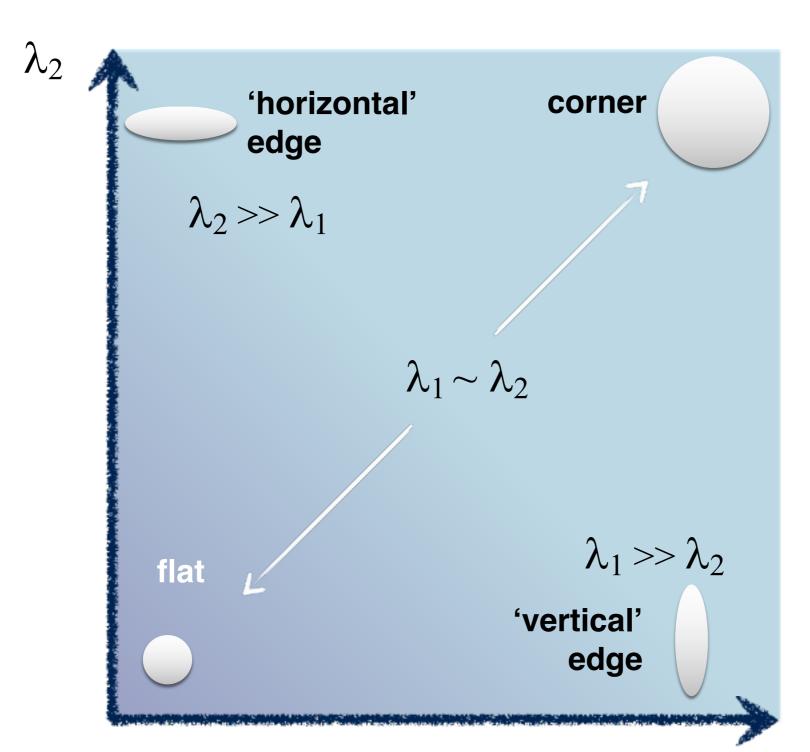
$$\lambda_2 \sim 0$$

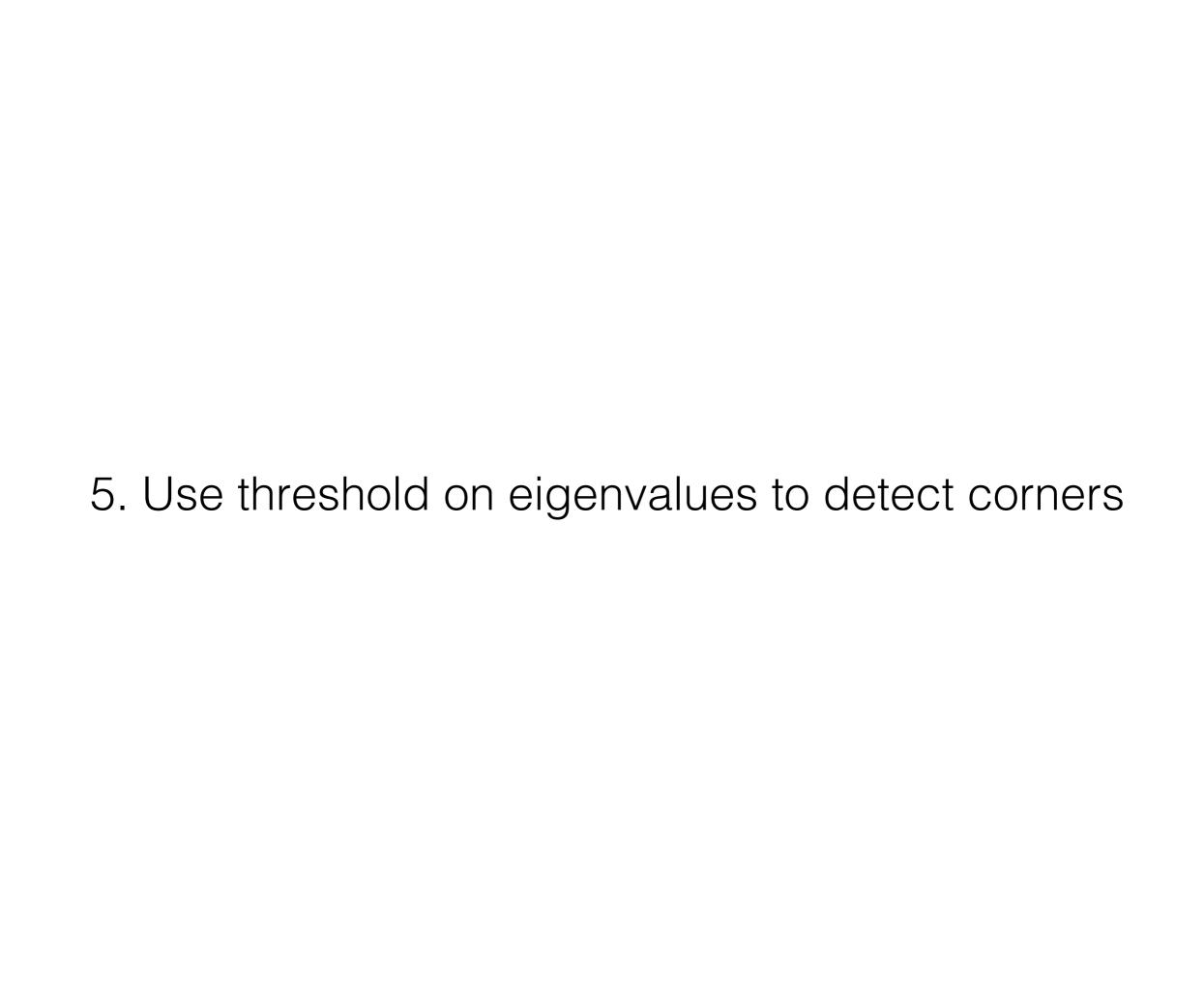
$$\lambda_1 >> \lambda_2$$



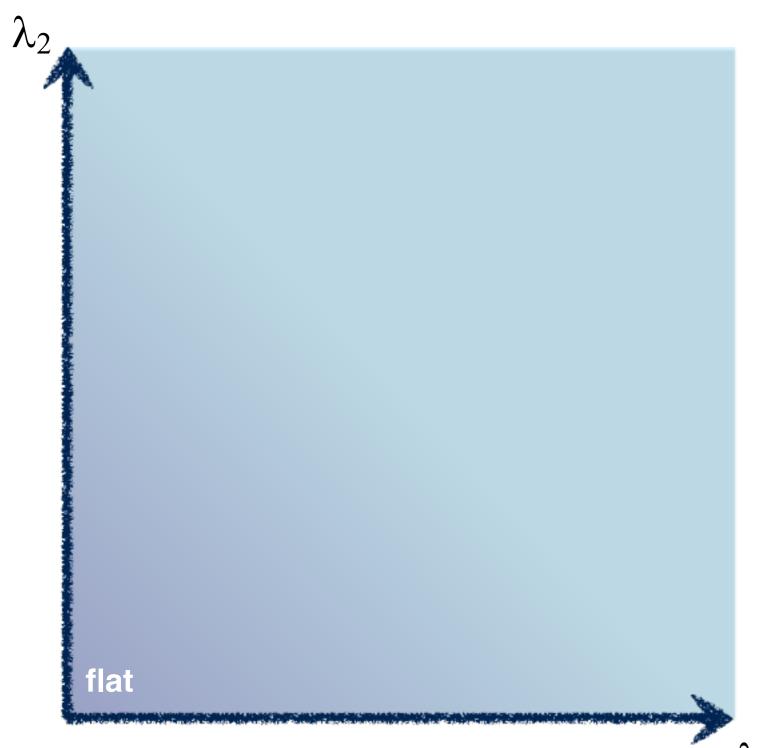








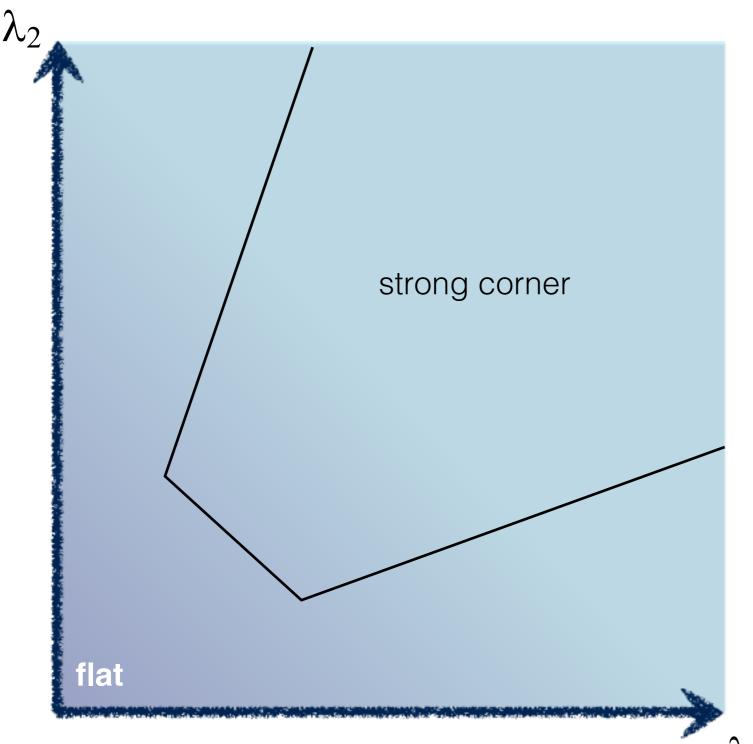
#### 5. Use threshold on eigenvalues to detect corners



Think of a function to score 'cornerness'

 $\lambda$ 

#### 5. Use threshold on eigenvalues to detect corners



Think of a function to score 'cornerness'

# 5. Use threshold on eigenvalues to detect corners (a function of )

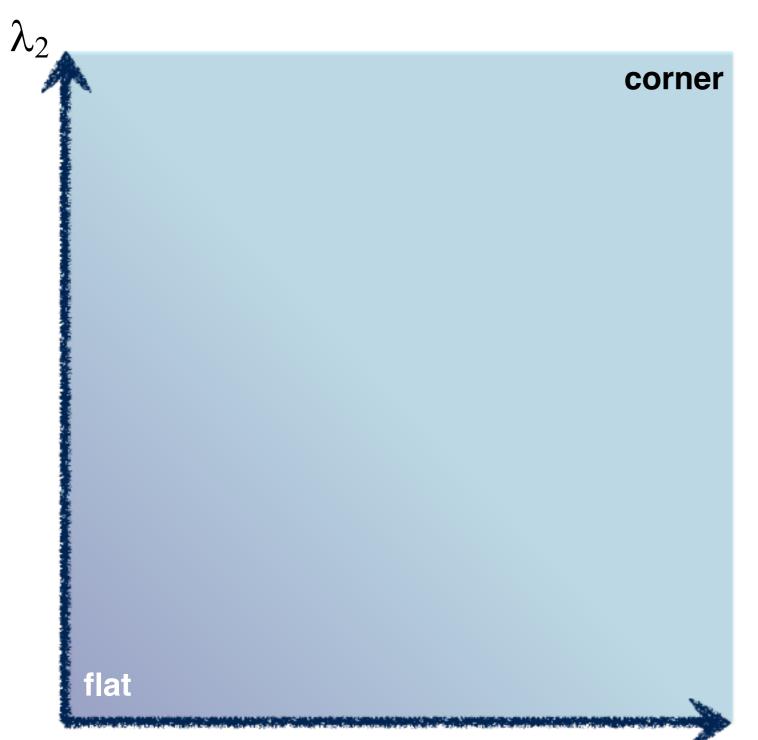


Use the smallest eigenvalue as the response function

$$R = \min(\lambda_1, \lambda_2)$$

 $\lambda_1$ 

# 5. Use threshold on eigenvalues to detect corners (a function of )



$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

Can compute this more efficiently...

# 5. Use threshold on eigenvalues to detect corners (a function of )

 $\lambda_2$ 

corner

$$R = \det(M) - \kappa \operatorname{trace}^2(M)$$

$$R \ll 0$$

flat

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

$$det \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

$$trace\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$$

#### Harris & Stephens (1988)

$$R = \det(M) - \kappa \operatorname{trace}^2(M)$$

Kanade & Tomasi (1994)

$$R = \min(\lambda_1, \lambda_2)$$

Nobel (1998)

$$R = \frac{\det(M)}{\operatorname{trace}(M) + \epsilon}$$

### Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." 1988.

1. Compute x and y derivatives of image

$$I_x = G_{\sigma}^x * I \qquad I_y = G_{\sigma}^y * I$$

2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x \qquad I_{y^2} = I_y \cdot I_y \qquad I_{xy} = I_x \cdot I_y$$

3. Compute the sums of the products of derivatives at each pixel

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
  $S_{y^2} = G_{\sigma'} * I_{y^2}$   $S_{xy} = G_{\sigma'} * I_{xy}$ 

### Harris Detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." 1988.

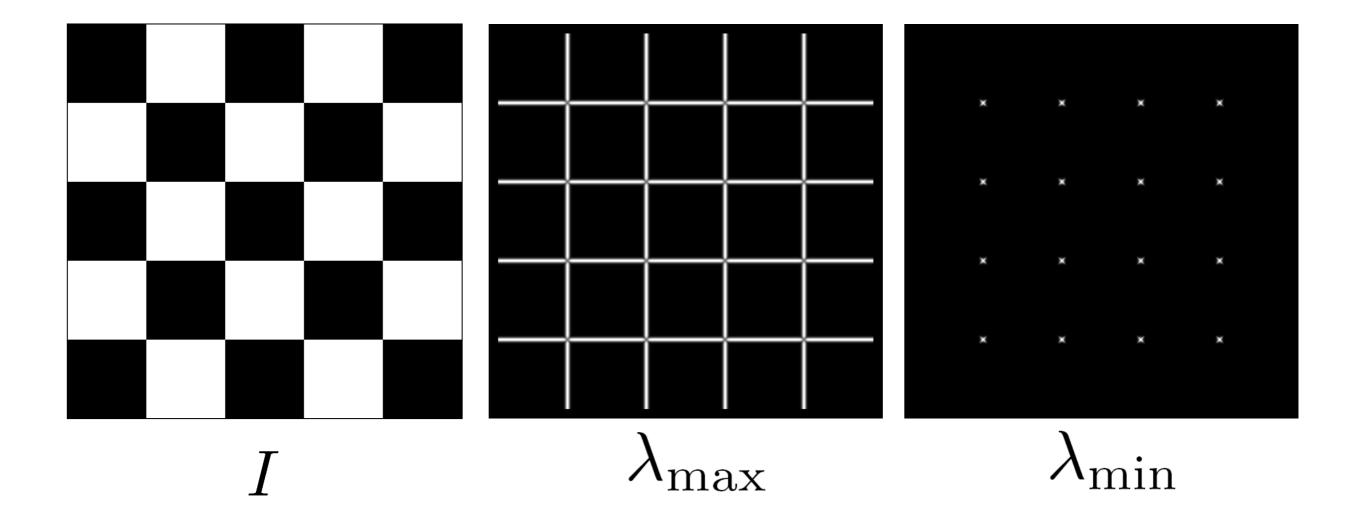
4. Define the matrix at each pixel

$$M(x,y) = \begin{bmatrix} S_{x^2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y^2}(x,y) \end{bmatrix}$$

5. Compute the response of the detector at each pixel

$$R = \det M - k (\operatorname{trace} M)^2$$

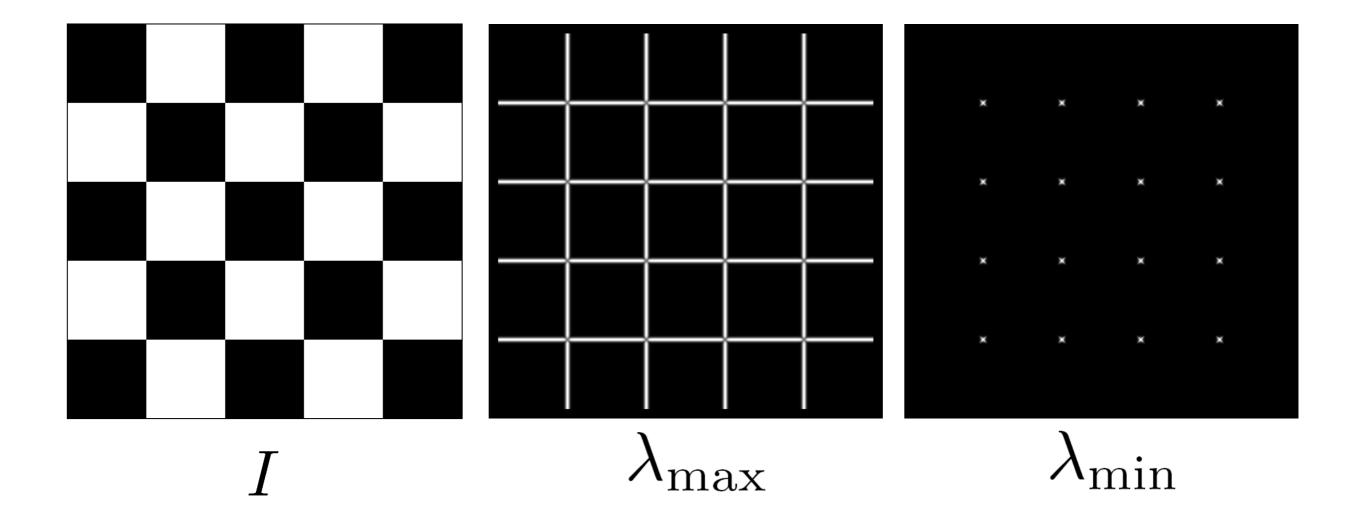
6. Threshold on value of R; compute non-max suppression.



Yet another option:

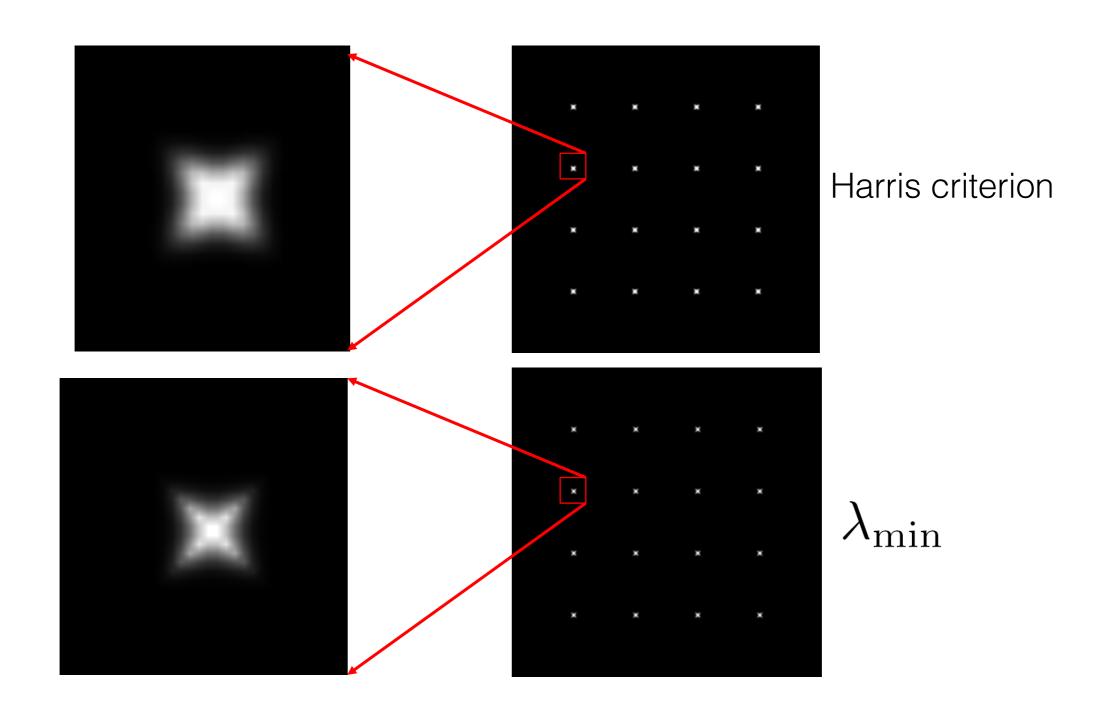
$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

How do you write this equivalently using determinant and trace?



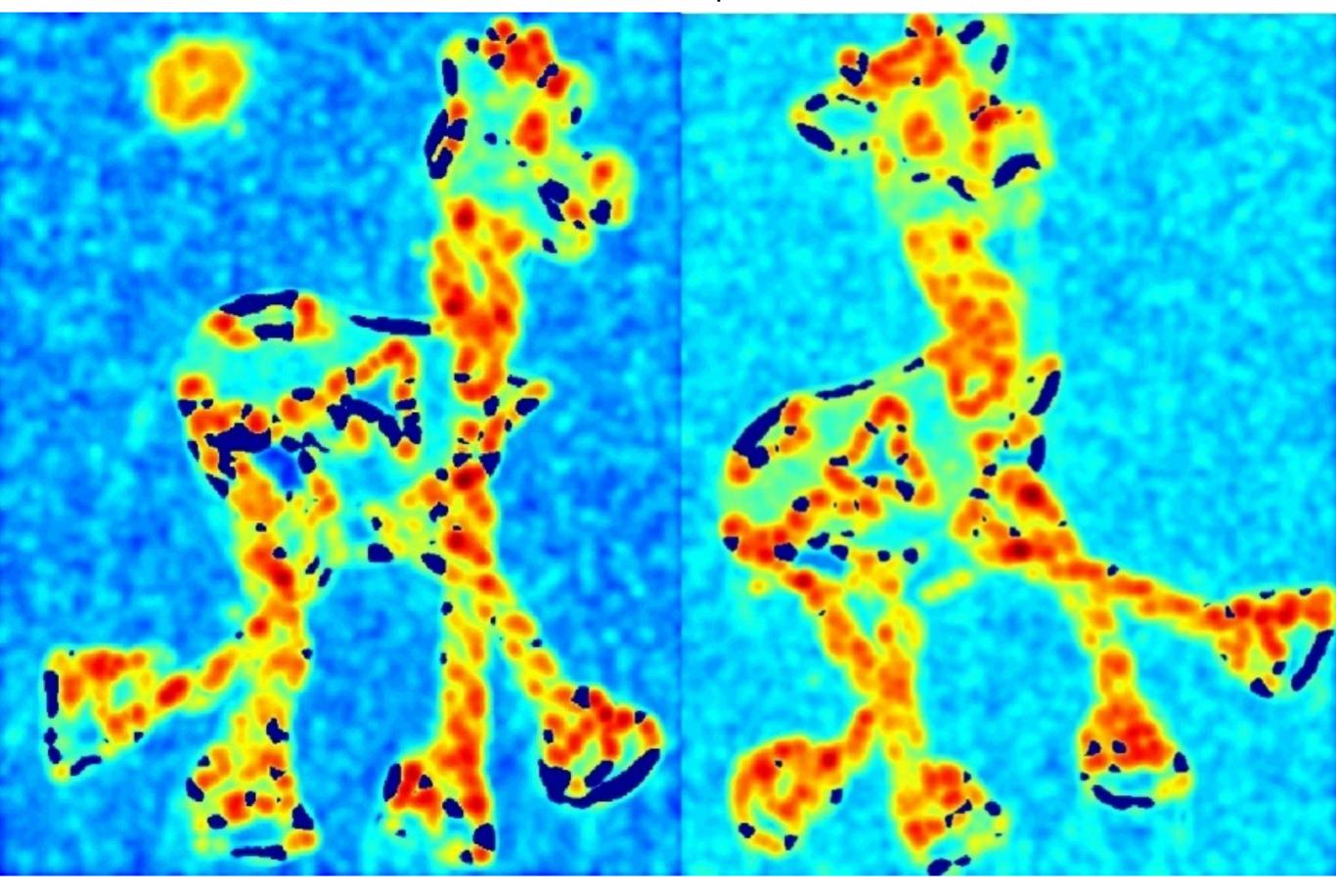
$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{determinant(H)}{trace(H)}$$

## Different criteria

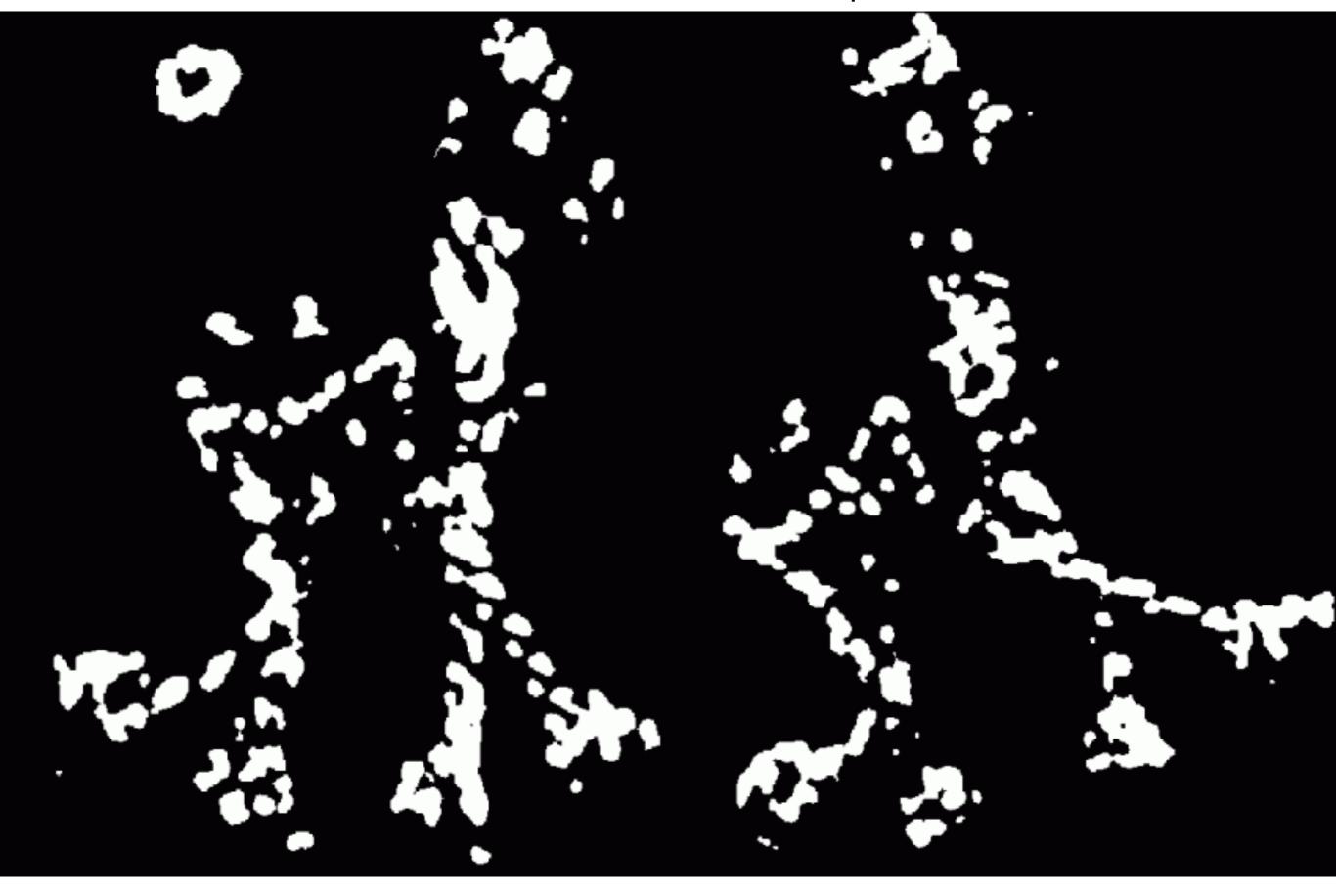




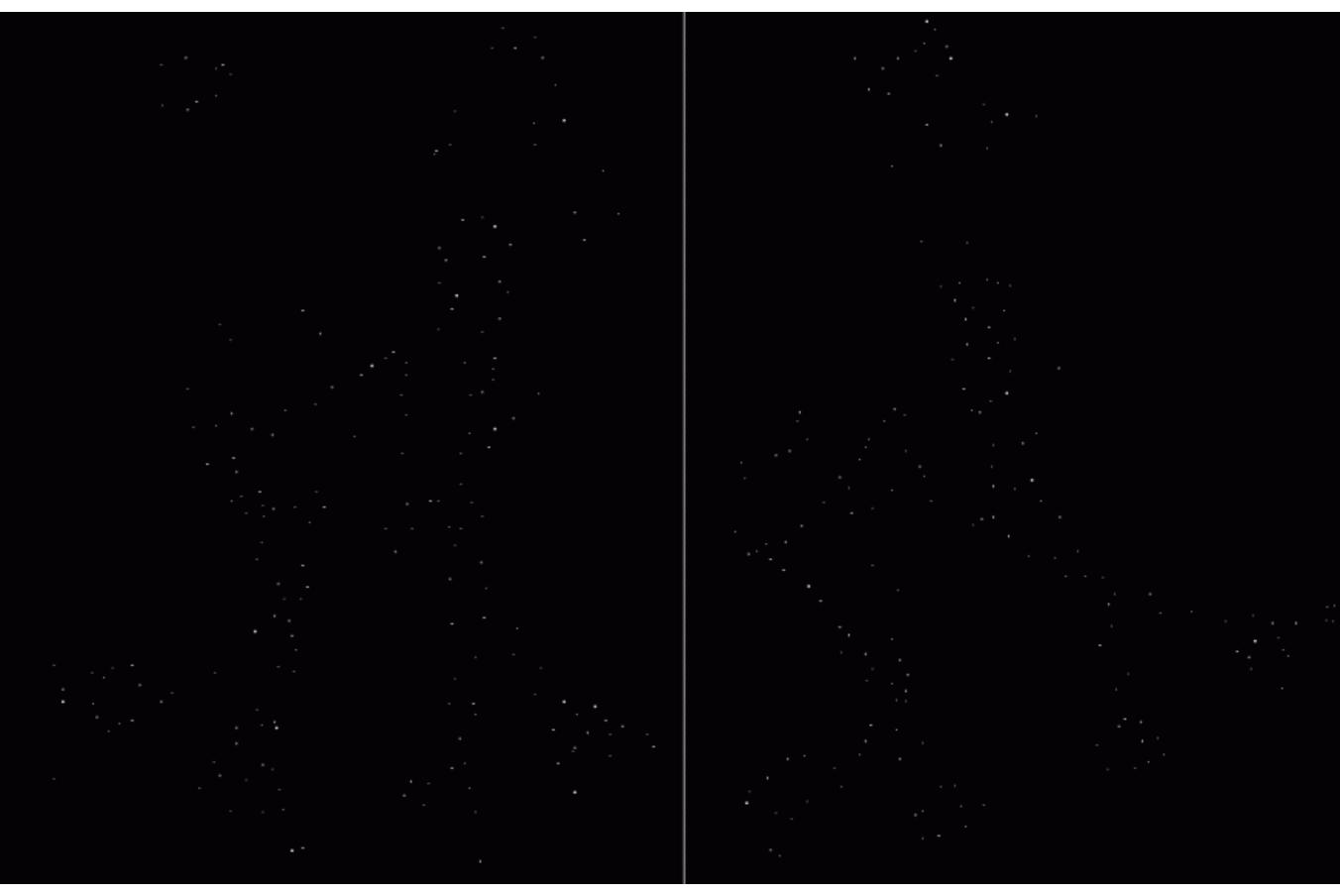
#### Corner response



Thresholded corner response

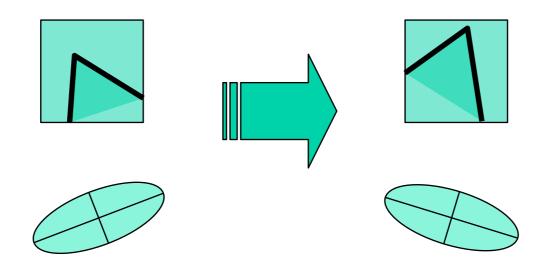


#### Non-maximal suppression





# Harris corner response is invariant to rotation



Ellipse rotates but its shape (eigenvalues) remains the same

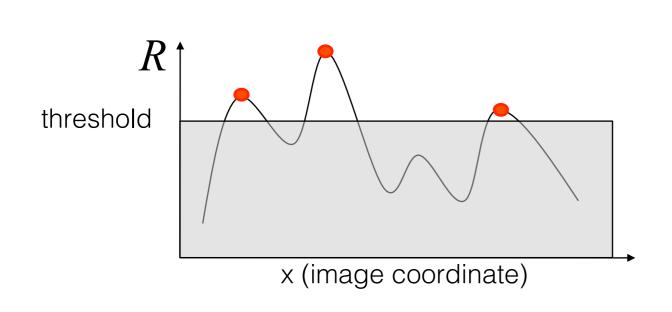
Corner response R is invariant to image rotation

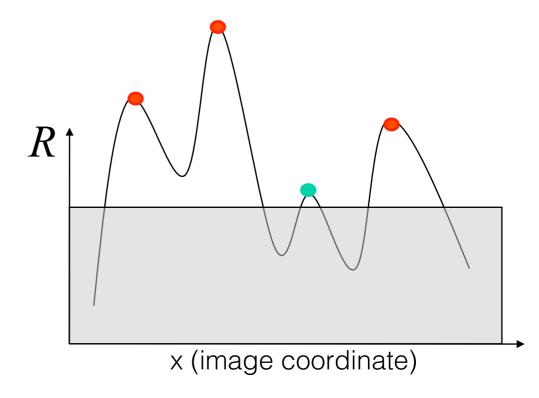
# Harris corner response is invariant to intensity changes

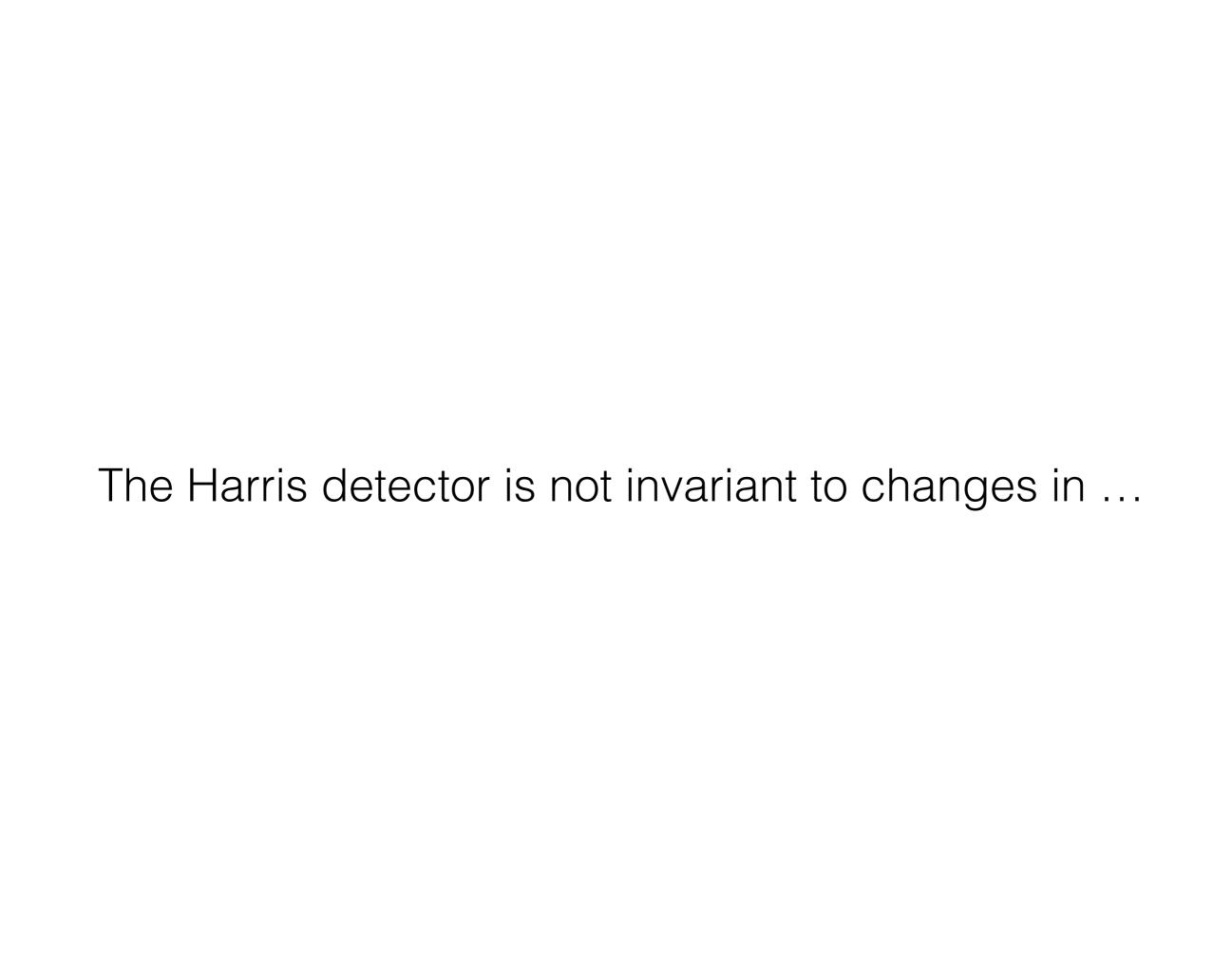
Partial invariance to affine intensity change

Only derivatives are used => invariance to intensity shift  $I \rightarrow I + b$ 

Intensity scale:  $I \rightarrow a I$ 





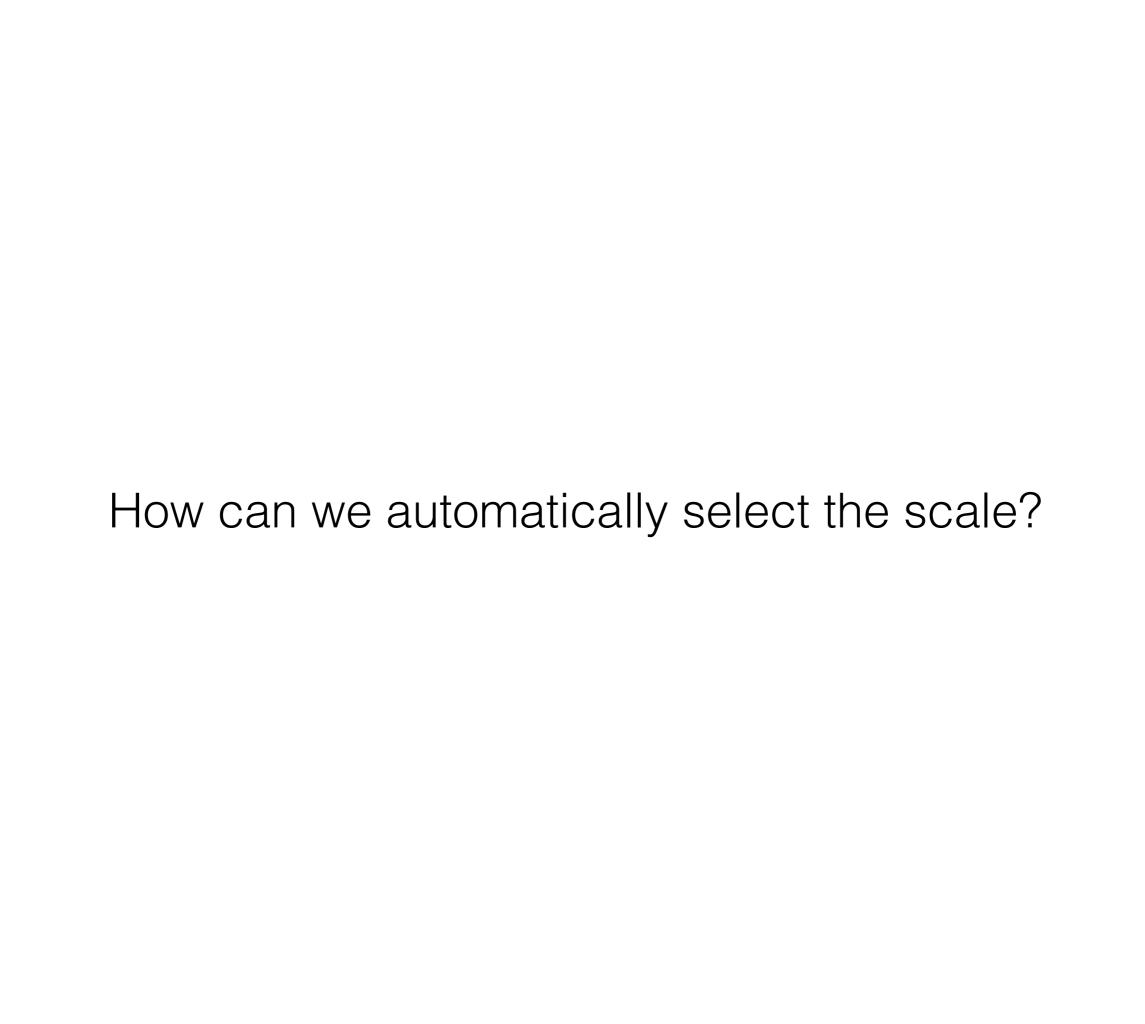


# The Harris corner detector is <u>not</u> invariant to scale



# Multi-scale detection



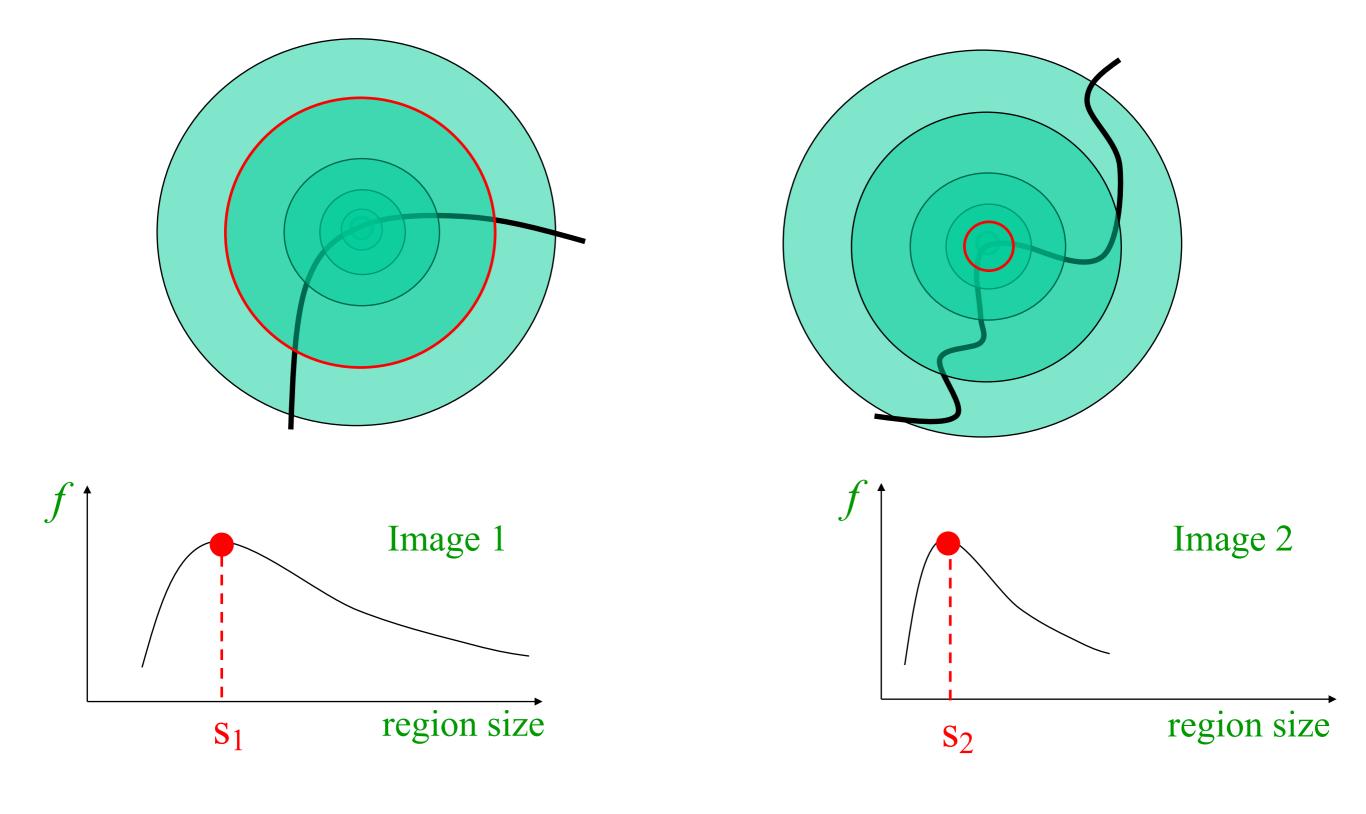


# Multi-scale blob detection

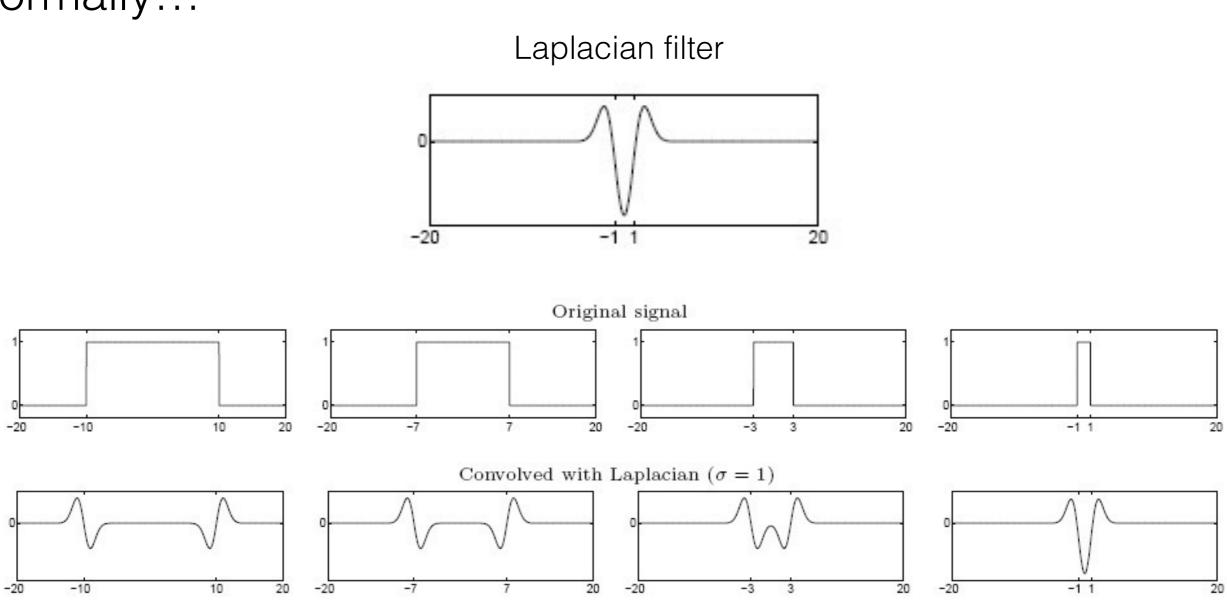


Intuitively...

#### Find local maxima in both position and scale

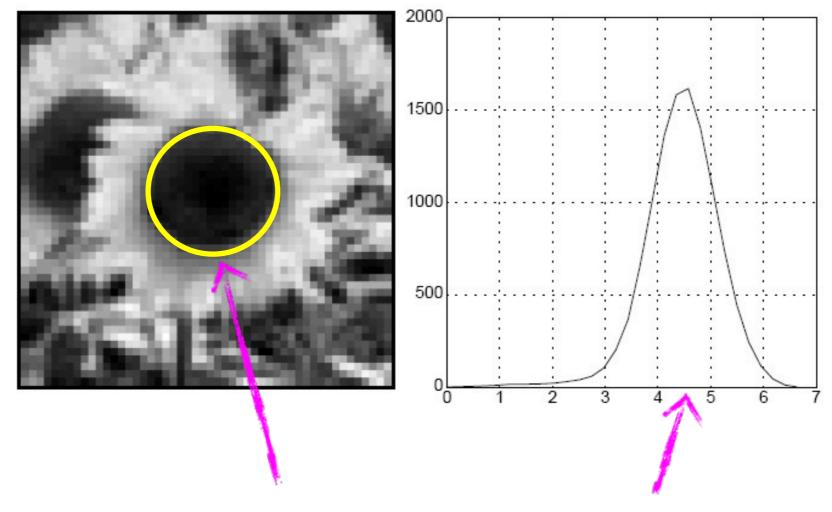


Formally...



Highest response when the signal has the same **characteristic scale** as the filter

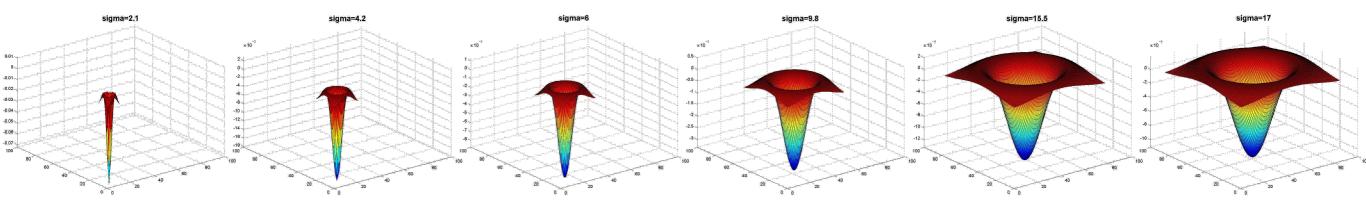
# characteristic scale - the scale that produces peak filter response



characteristic scale

we need to search over characteristic scales

#### What happens if you apply different Laplacian filters?

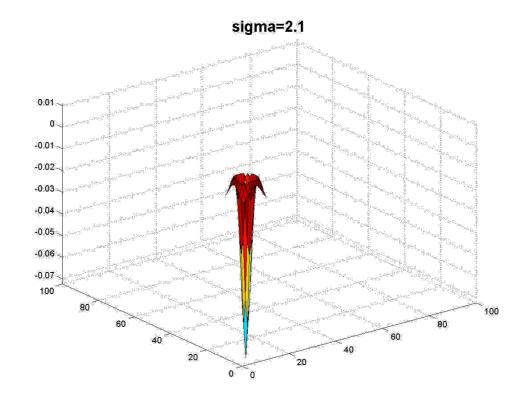


Full size

3/4 size



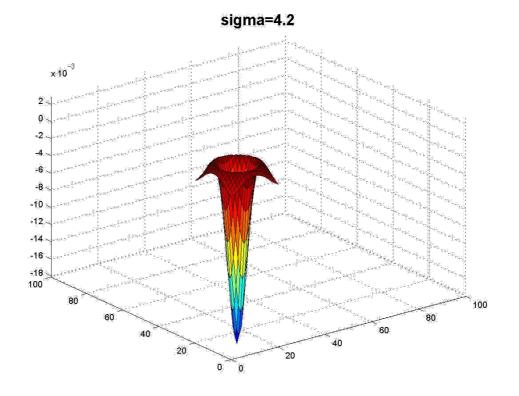






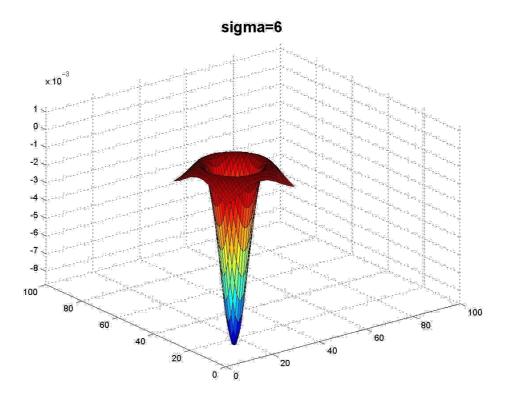


jet color scale blue: low, red: high



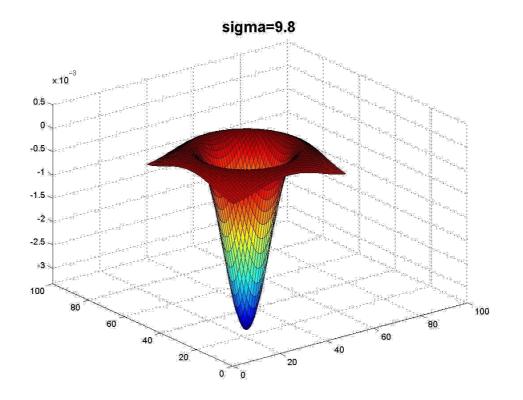






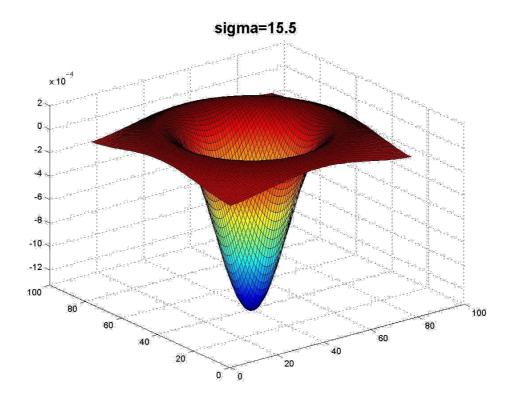






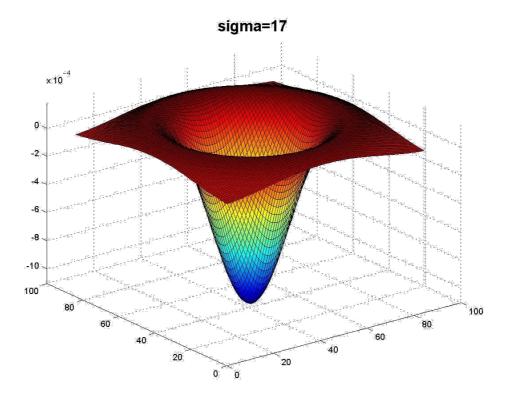














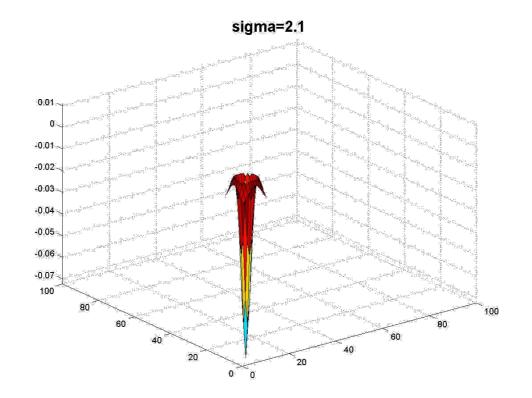


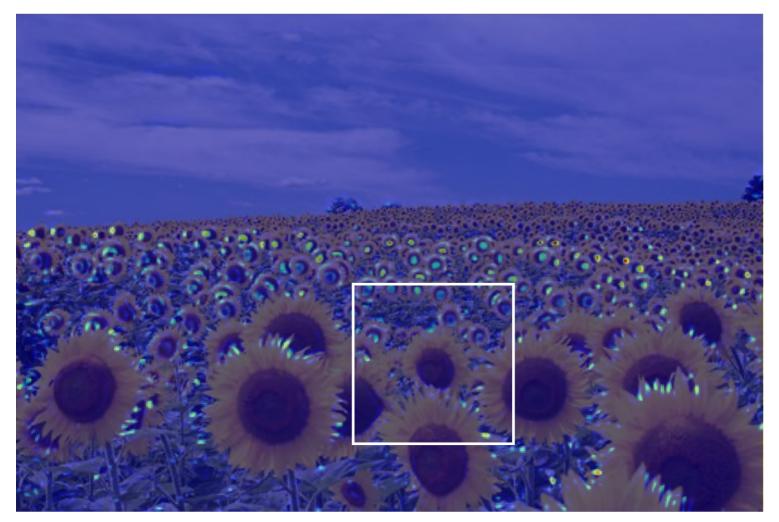
What happened when you applied different Laplacian filters?

Full size 3/4 size

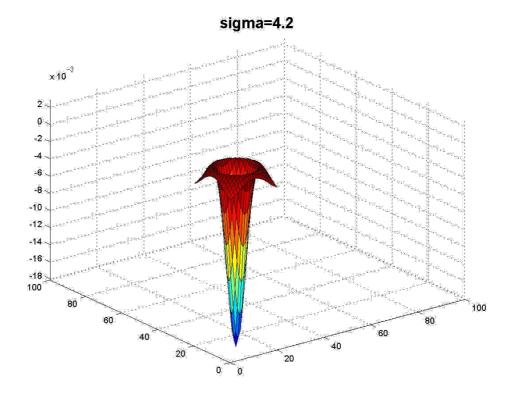




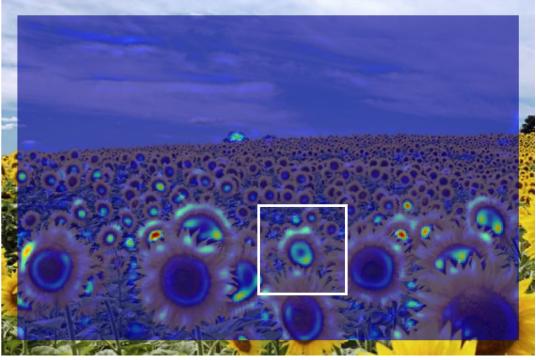


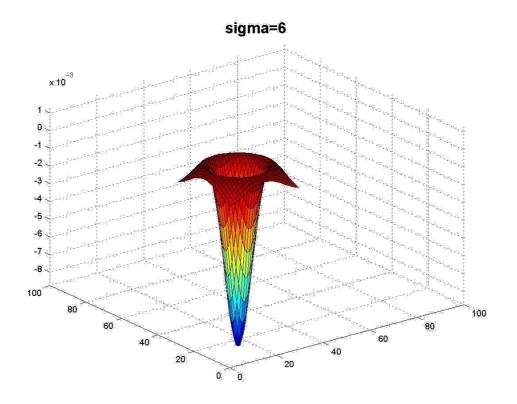


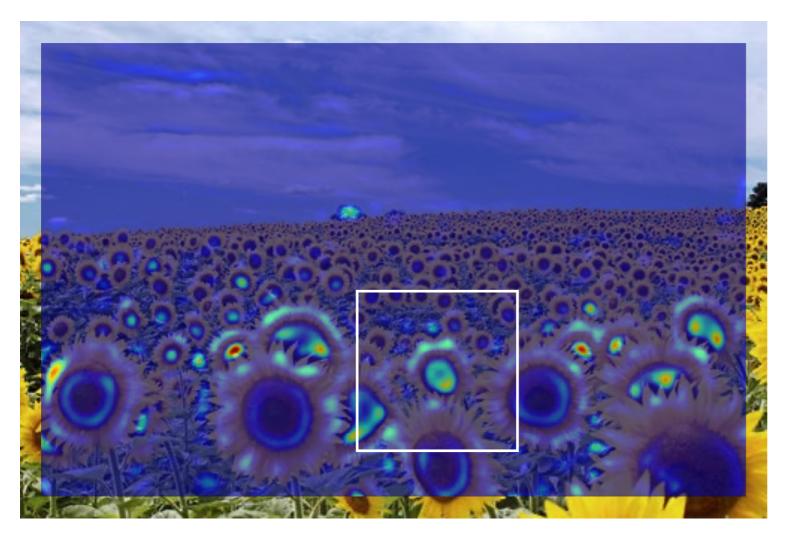




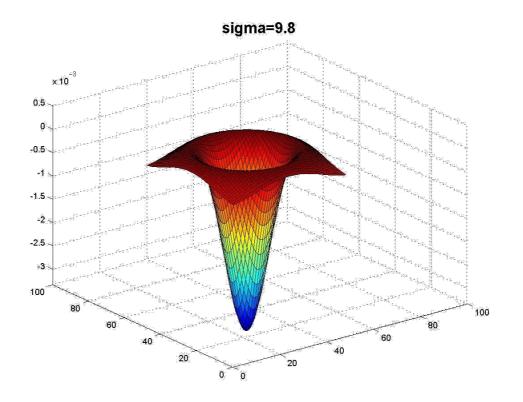


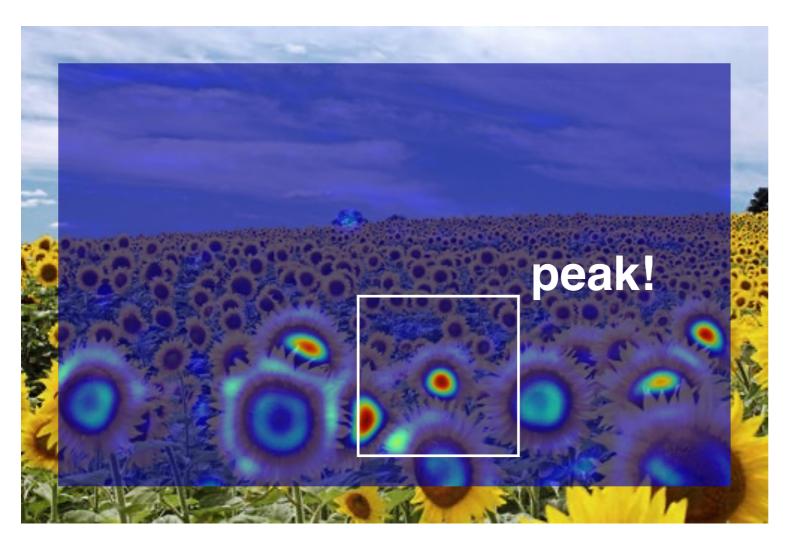


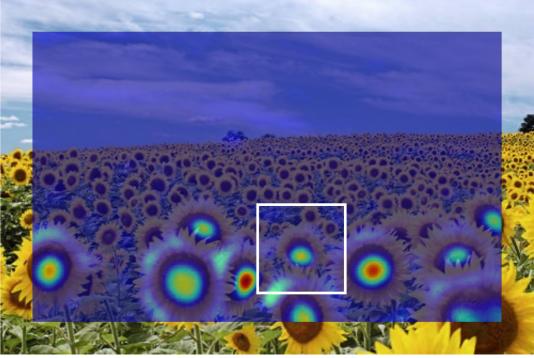


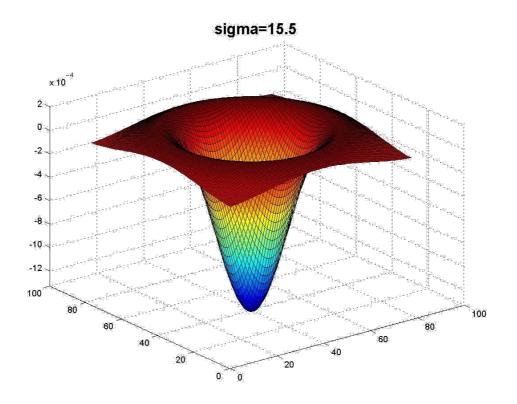


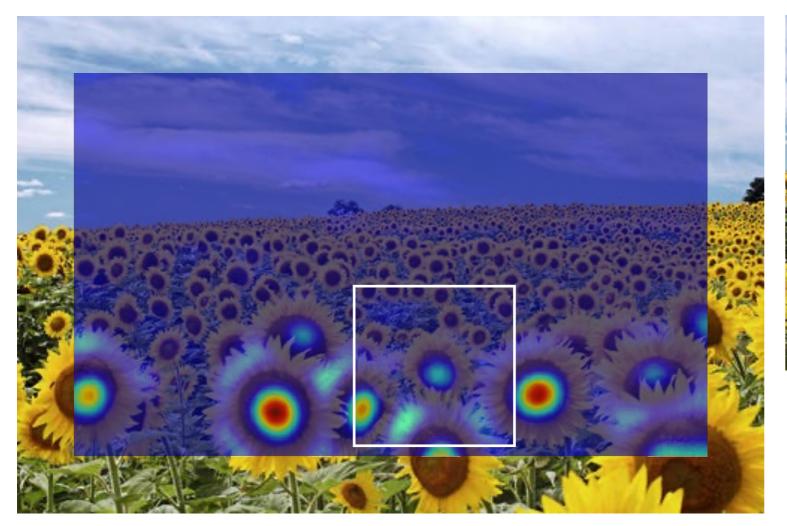


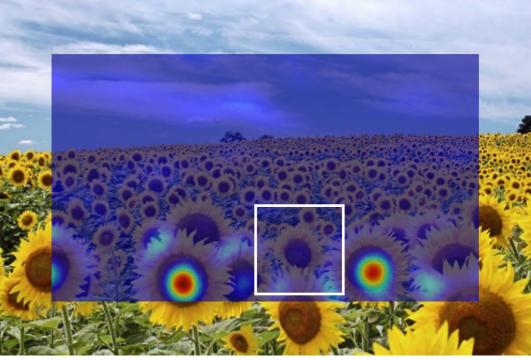


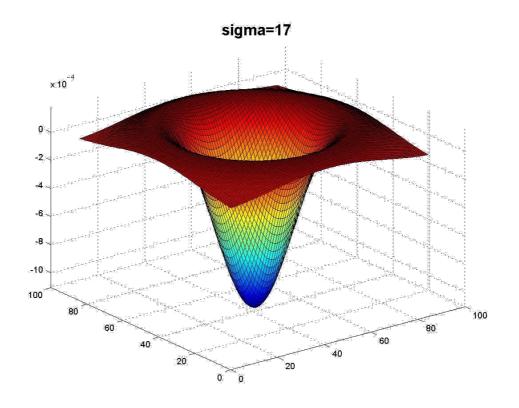


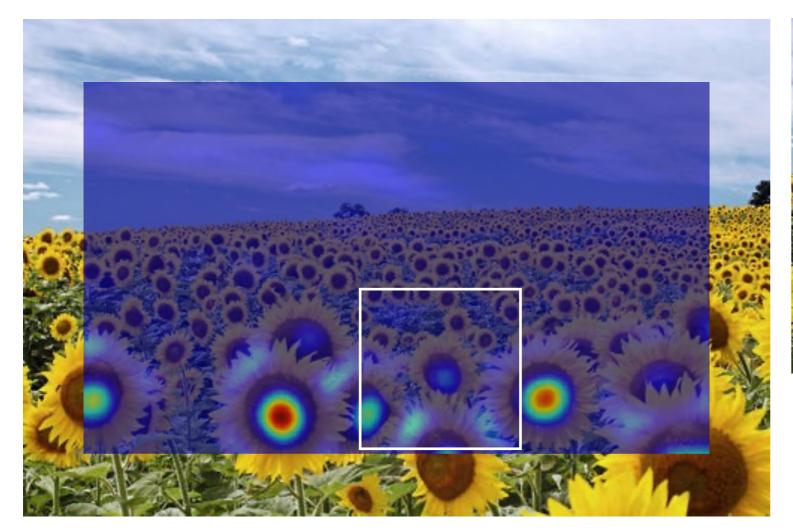


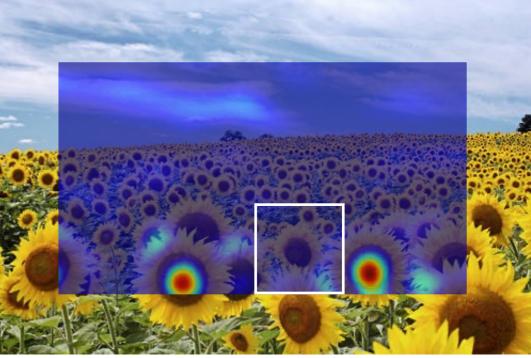


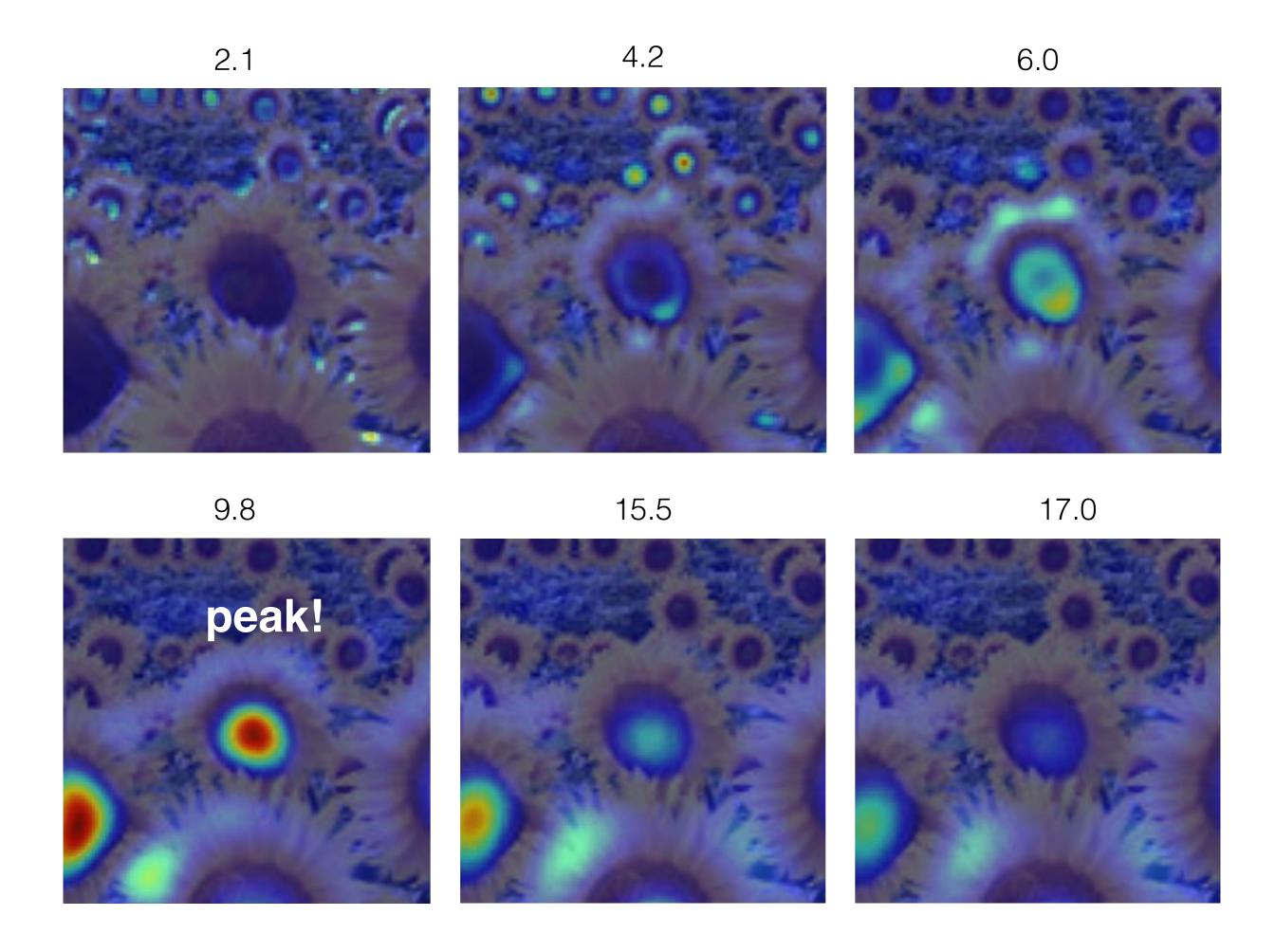




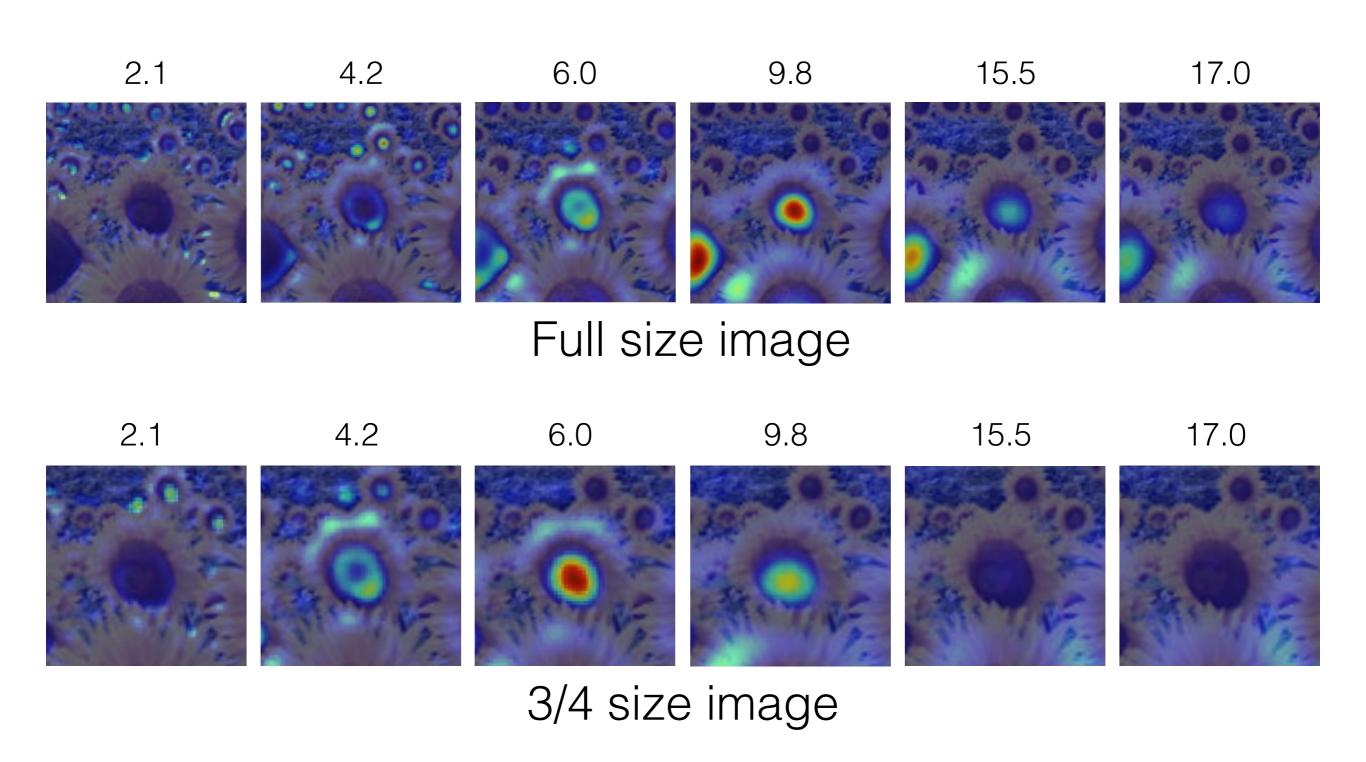




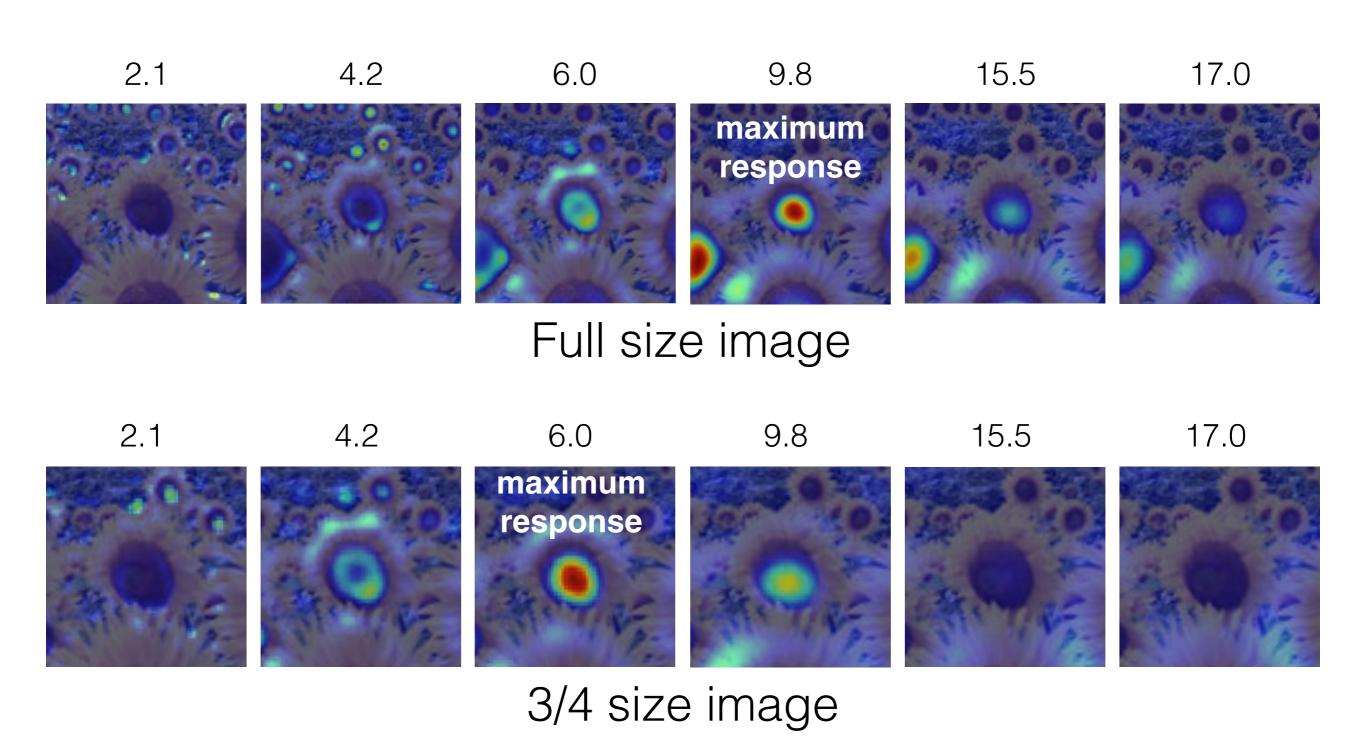


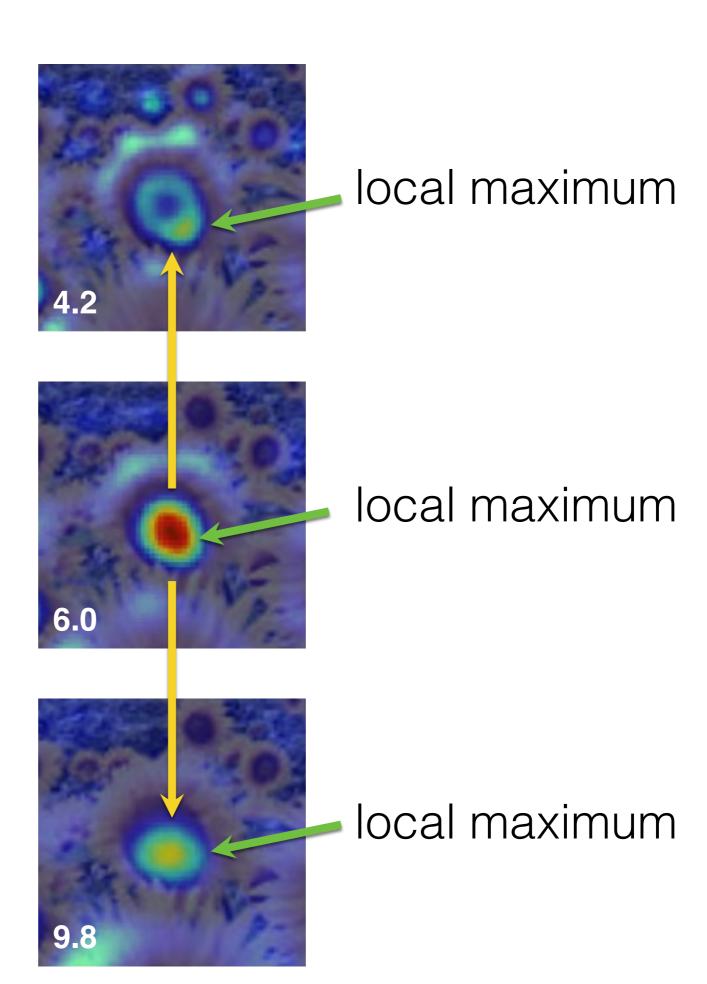


## optimal scale



## optimal scale





cross-scale maximum

## How would you implement scale selection?

## Implementation

For each level of the Gaussian pyramid compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

**save** scale and location of feature (x,y,s)

