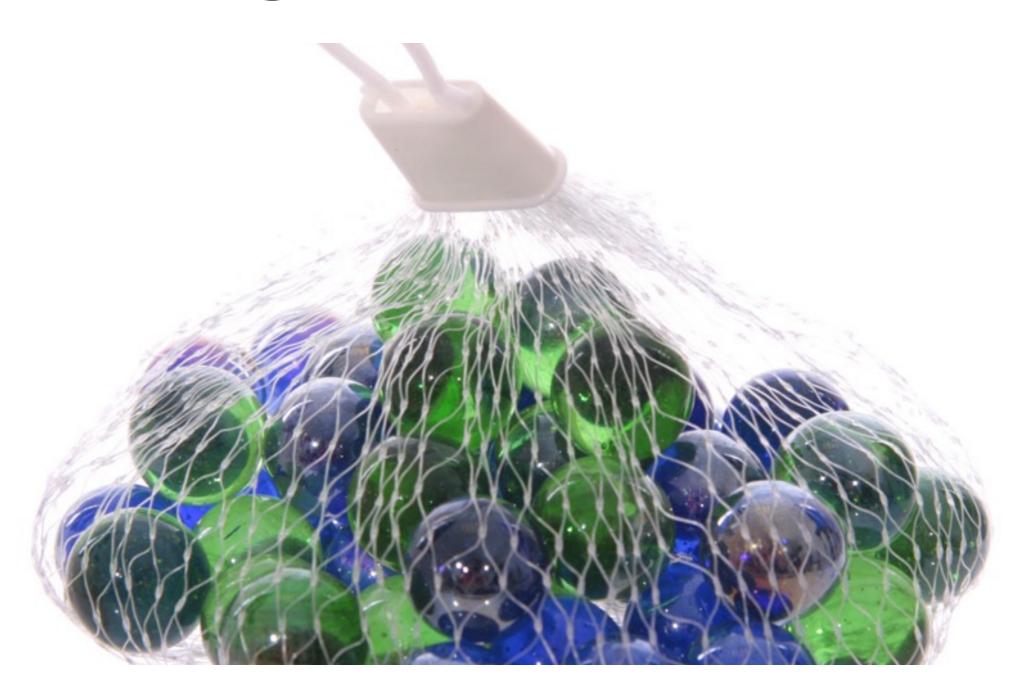
Image classification



http://16385.courses.cs.cmu.edu/

16-385 Computer Vision Spring 2024, Lecture 13 & 14

Overview of today's lecture

- Introduction to learning-based vision.
- Image classification.
- Bag-of-words.
- K-means clustering.
- Classification.
- K nearest neighbors.
- Naïve Bayes.
- Support vector machine.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).
- Noah Snavely (Cornell University).
- Fei-Fei Li (Stanford University).

Course overview

1. Image processing.

Lectures 1 – 6 See also 18-793: Image and Video Processing

2. Geometry-based vision. ←

Lectures 7 – 12 See also 16-822: Geometry-based Methods in Vision

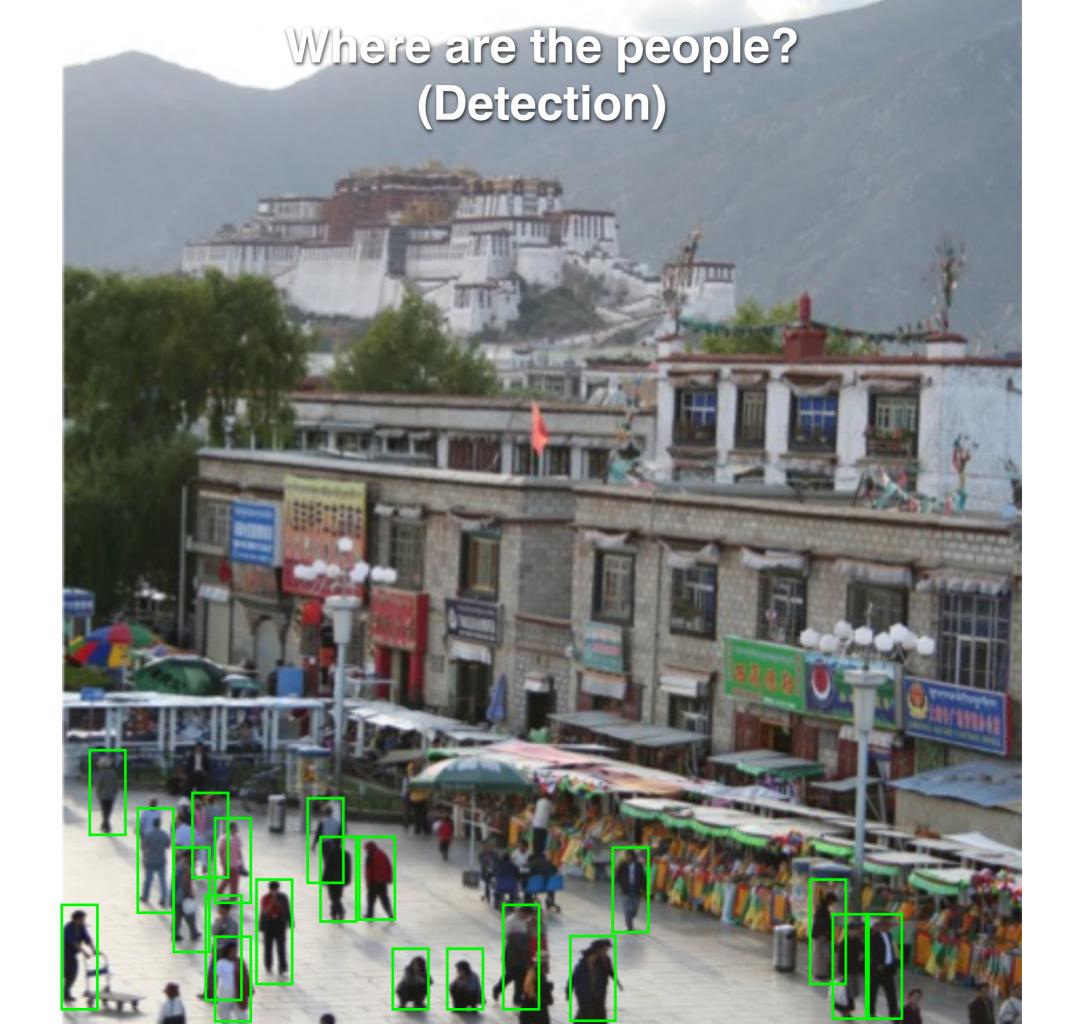
3. Learning-based vision. \leftarrow We are starting this part now

4. Dealing with motion.

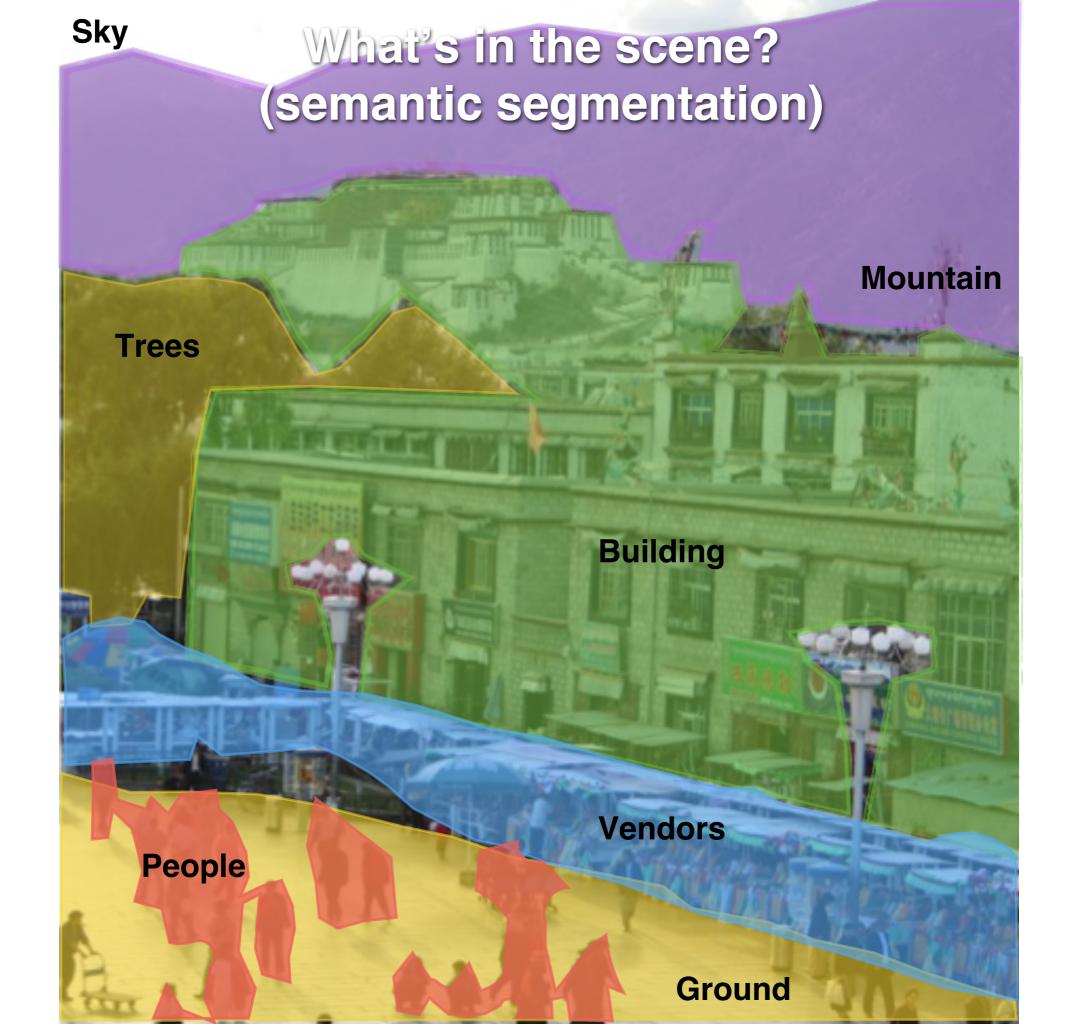
5. Physics-based vision.

What do we mean by learningbased vision or 'semantic vision'?

Is this a street light? (Recognition / classification)



Is that Potala palace? (Identification)



What type of scene is it? (Scene categorization)

Outdoor

Marketplace

City

- AUT II

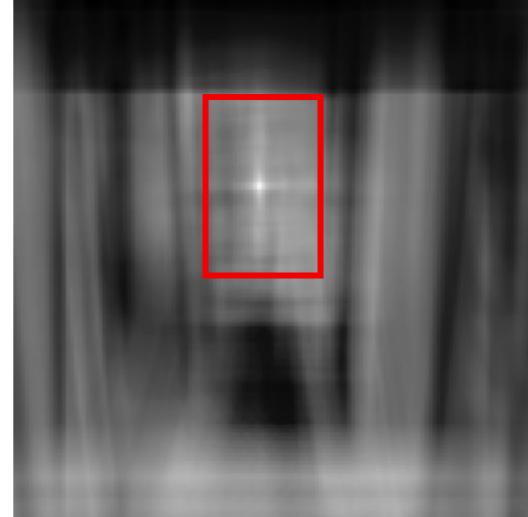
What are these people doing? (Activity / event recognition)

AUT

Object recognition Is it really so hard?

Find the chair in this image

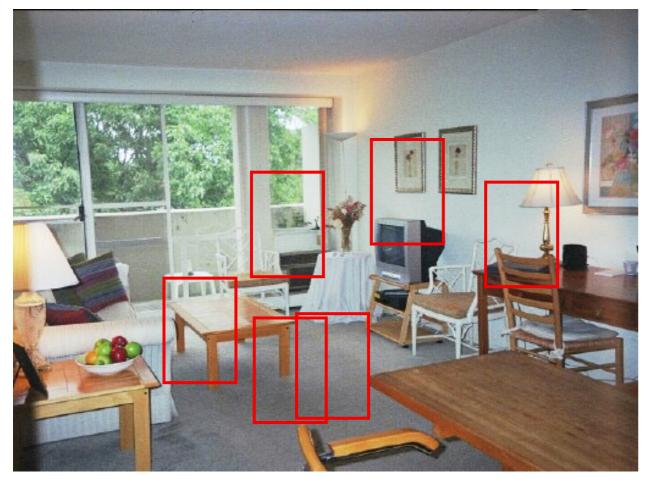
Output of normalized correlation

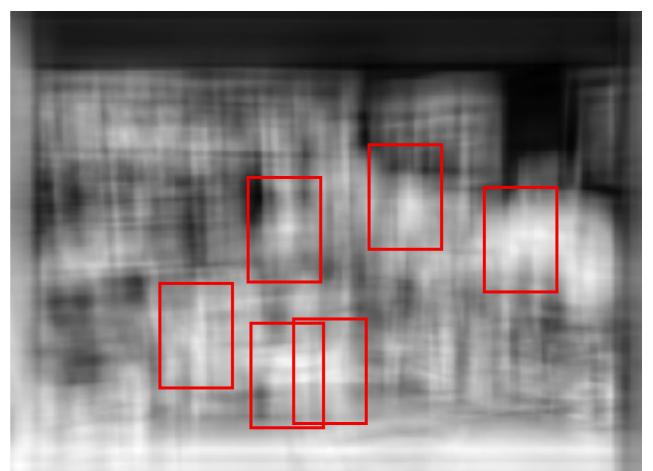


This is a chair

Object recognition Is it really so hard?

Find the chair in this image





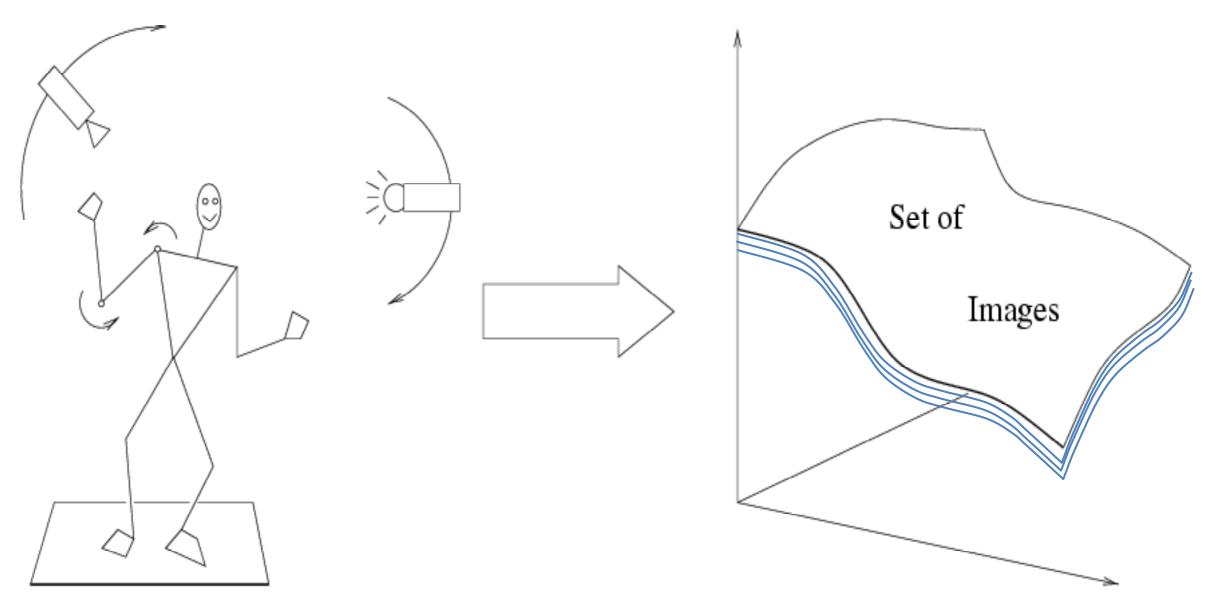
Pretty much garbage Simple template matching is not going to make it

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

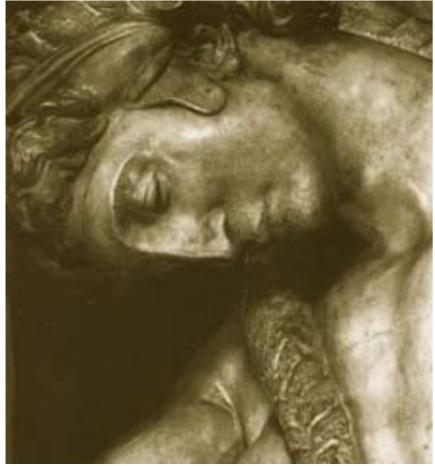
Why is this hard?



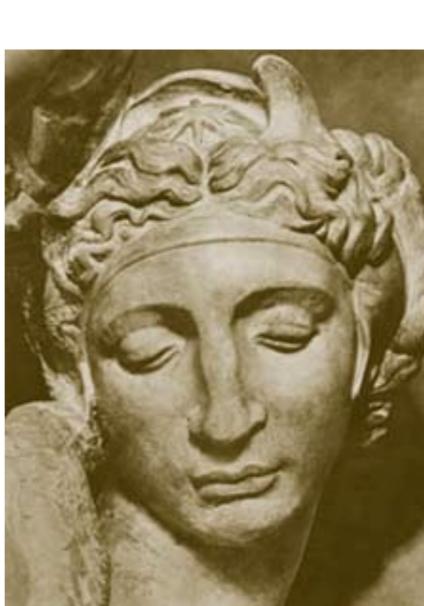
Variability:

Camera position Illumination Shape parameters

Challenge: variable viewpoint



Michelangelo 1475-1564



Challenge: variable illumination



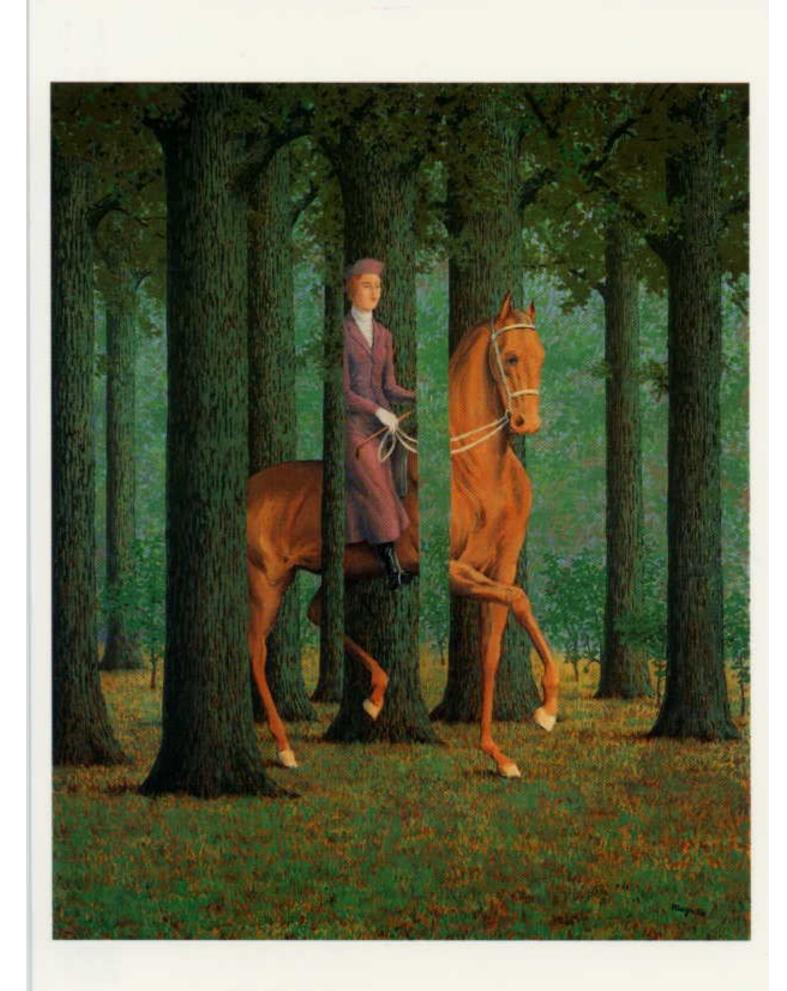
image credit: J. Koenderink

Challenge: scale

Challenge: deformation

Deformation

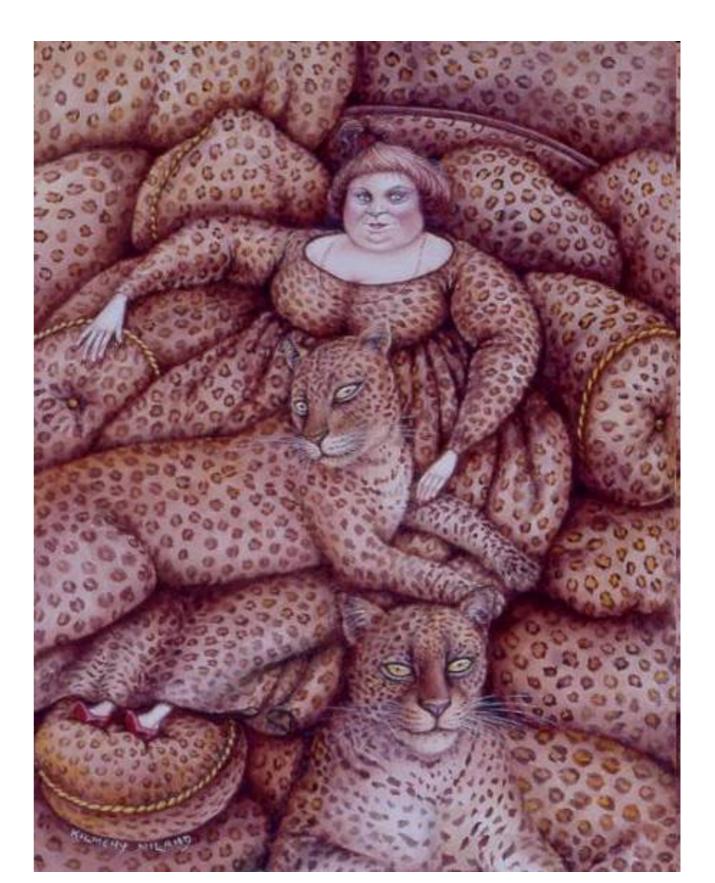
Challenge: Occlusion



Magritte, 1957

Occlusion

Challenge: background clutter



Kilmeny Niland. 1995

Challenge: intra-class variations

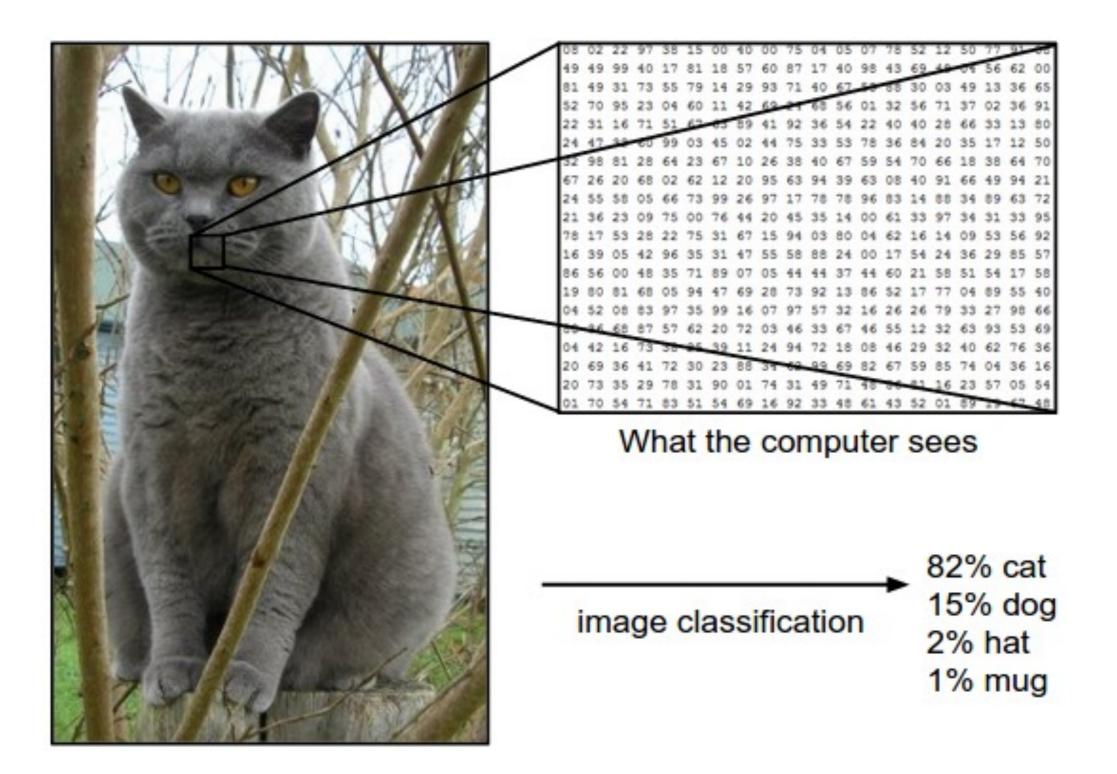
Svetlana Lazebnik

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

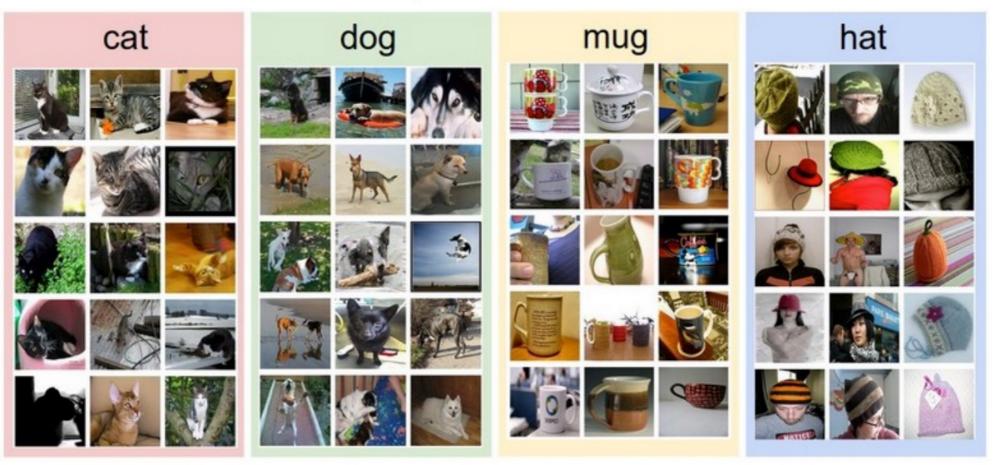
Image Classification: Problem



Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

Example training set



Bag of words

What object do these parts belong to?

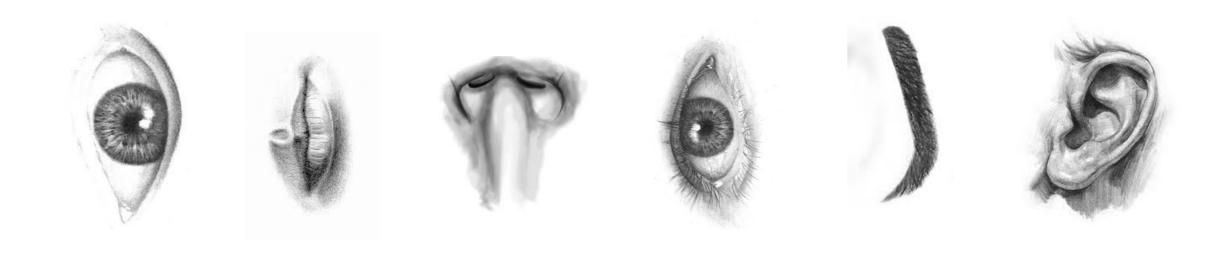
Some local features are very informative

a collection of local features (bag-of-features)

- deals well with occlusion
- scale invariant
- rotation invariant

An object as

(not so) crazy assumption



spatial information of local features can be ignored for object recognition

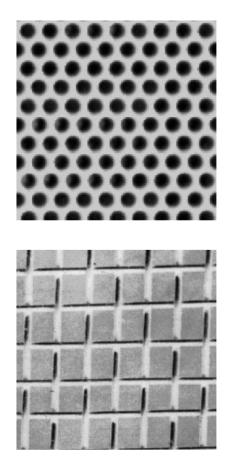
Bag-of-features

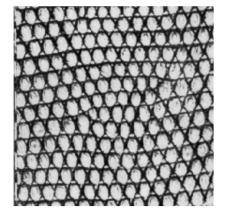
represent a data item (document, texture, image) as a histogram over features

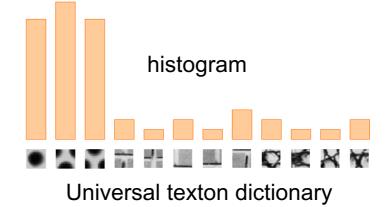
an old idea

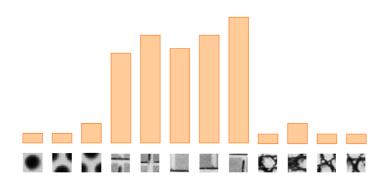
(e.g., texture recognition and information retrieval)

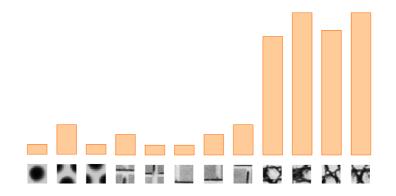
Texture recognition









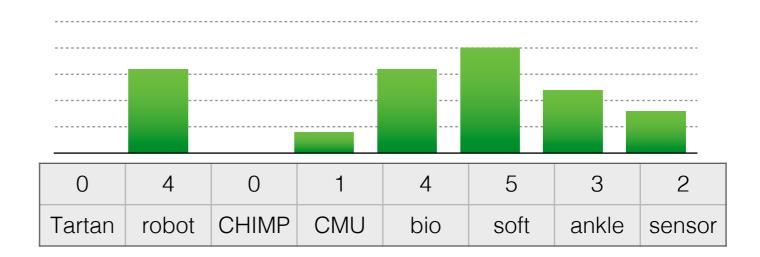


Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation, 1979

DARPA Selects Carnegie Melon Ren The Tartan Rescue Team finding to prepare for next Ren from Carnegie Mellon Diversity's National forthis four-limbed CMUH Robotics Engineering forthis four-limbed CMUH forthis Center ranked third among tearls four-limbed CMUH The Scored 18 out of apossible The that Obstrast Consts during the rela Wo-day trials It that that demonstrated its ability to beh demonstrated its ability to beh demonstrated its ability to beh	The Newspa								
RoboticsEngineeting Center ranked third among teams competing in the DefenseHighly intelligent integent integent integentCenter ranked third among teams competing in the DefensePlatform, or CHIMP, robot thatThe that16210012 (DARPA)RoboticsPointsthe thatTartanrobotCHIMPCMUbiosoftankle	DARPA Selects Carnegie Me The Tartan Rescue Team from Carnegie Mellon December's finals The becember's finals The tarrie four limbed CMU								
Defense Advanced two-day trials It the Research Projects Agency demonstrated its ability to beh (DARPA) Robotics demonstrated its ability to beh tasks as of a	Robotics Engineering Highly Intelligent The Center ranked third among Platform, or CHIMP, robot The scored 18 out of a possible that	1	6	2	1	0	0	0	1
weekend in Homestead, removing debris, cutifig a cup	Research Projects Agency two-day that	Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor

teams eligible for DARPA



http://www.fodey.com/generators/newspaper/snippet.asp

A document (datapoint) is a vector of counts over each word (feature)

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

 $n(\cdot)$ counts the number of occurrences

What is the similarity between two documents?

A document (datapoint) is a vector of counts over each word (feature)

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

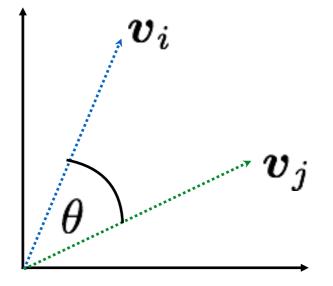
 $n(\cdot)$ counts the number of occurrences

just a histogram over words

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.

$$egin{aligned} d(oldsymbol{v}_i,oldsymbol{v}_j) &= \cos heta \ &= rac{oldsymbol{v}_i \cdot oldsymbol{v}_j}{\|oldsymbol{v}_i\|\|oldsymbol{v}_j\|} \end{aligned}$$



but not all words are created equal

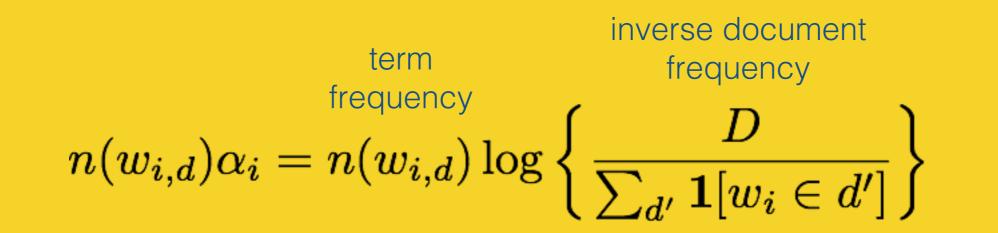
TF-IDF

Term Frequency Inverse Document Frequency

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

weigh each word by a heuristic

$$\boldsymbol{v}_d = [n(w_{1,d})\alpha_1 \quad n(w_{2,d})\alpha_2 \quad \cdots \quad n(w_{T,d})\alpha_T]$$



Standard BOW pipeline

(for image classification)

Dictionary Learning:

Learn Visual Words using clustering

Encode:

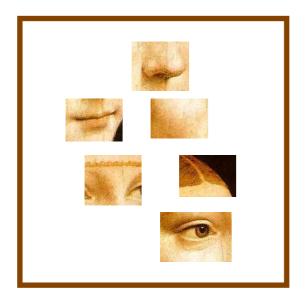
build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

Dictionary Learning: Learn Visual Words using clustering

1. extract features (e.g., SIFT) from images

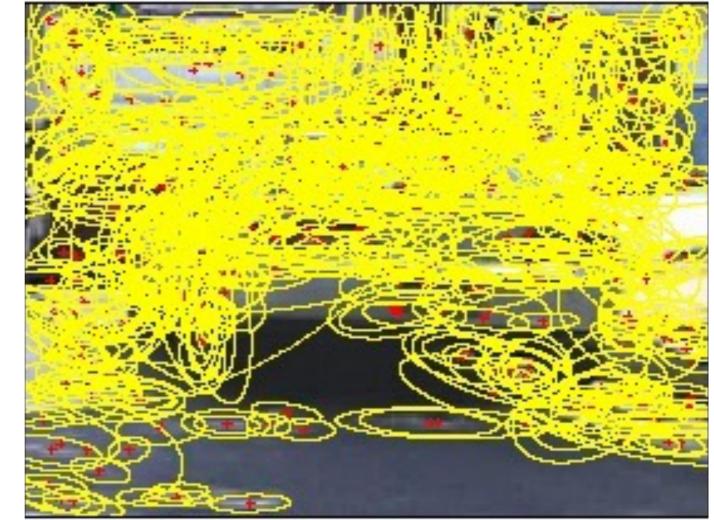


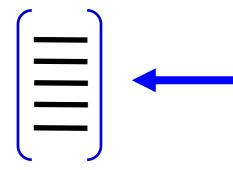
Dictionary Learning: Learn Visual Words using clustering

2. Learn visual dictionary (e.g., K-means clustering)

What kinds of features can we extract?

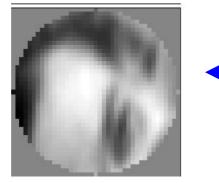
- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation-based patches (Barnard et al. 2003)



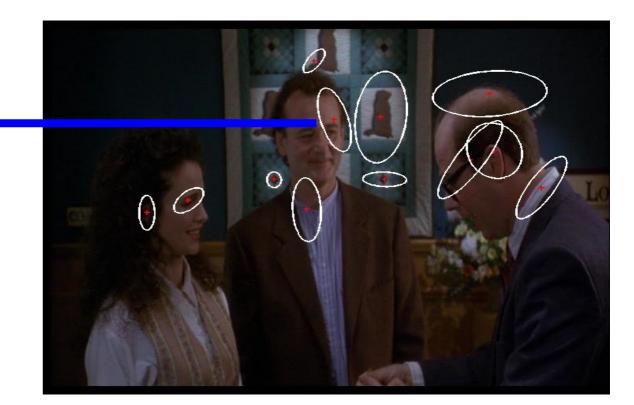


Compute SIFT descriptor

[Lowe'99]

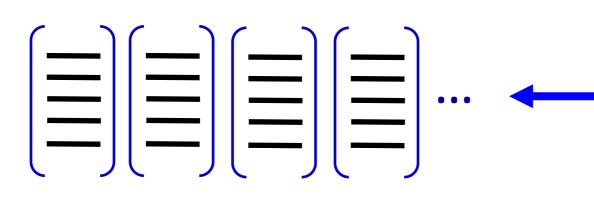


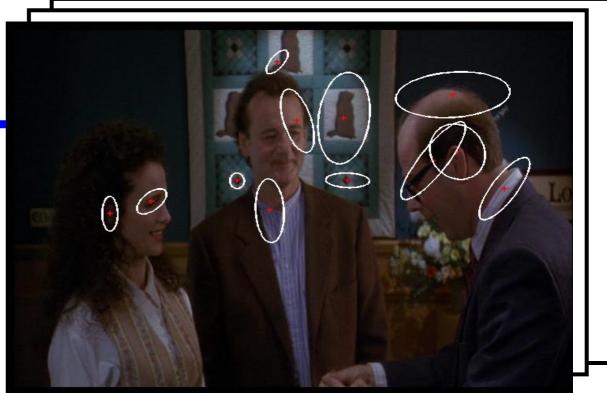
Normalize patch



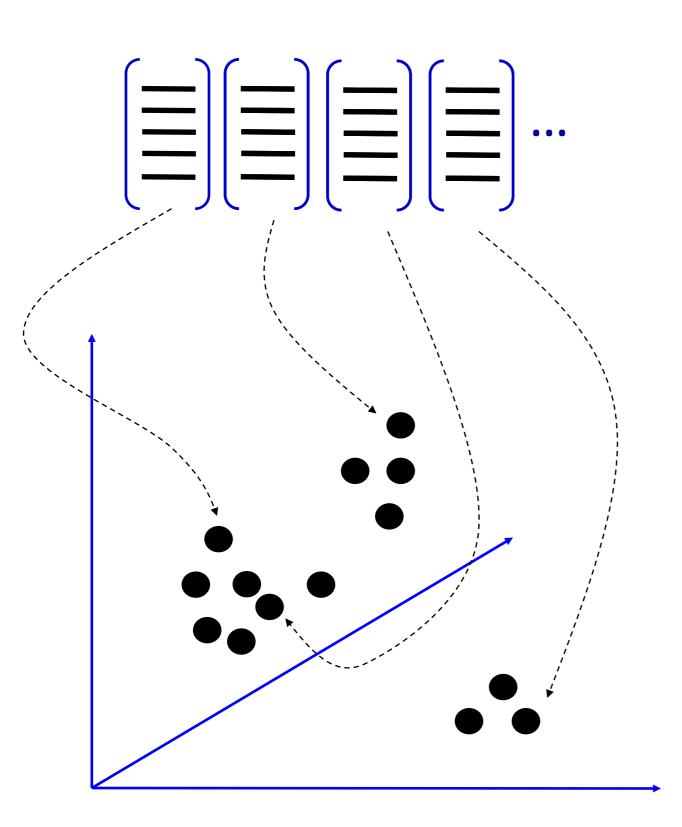
Detect patches

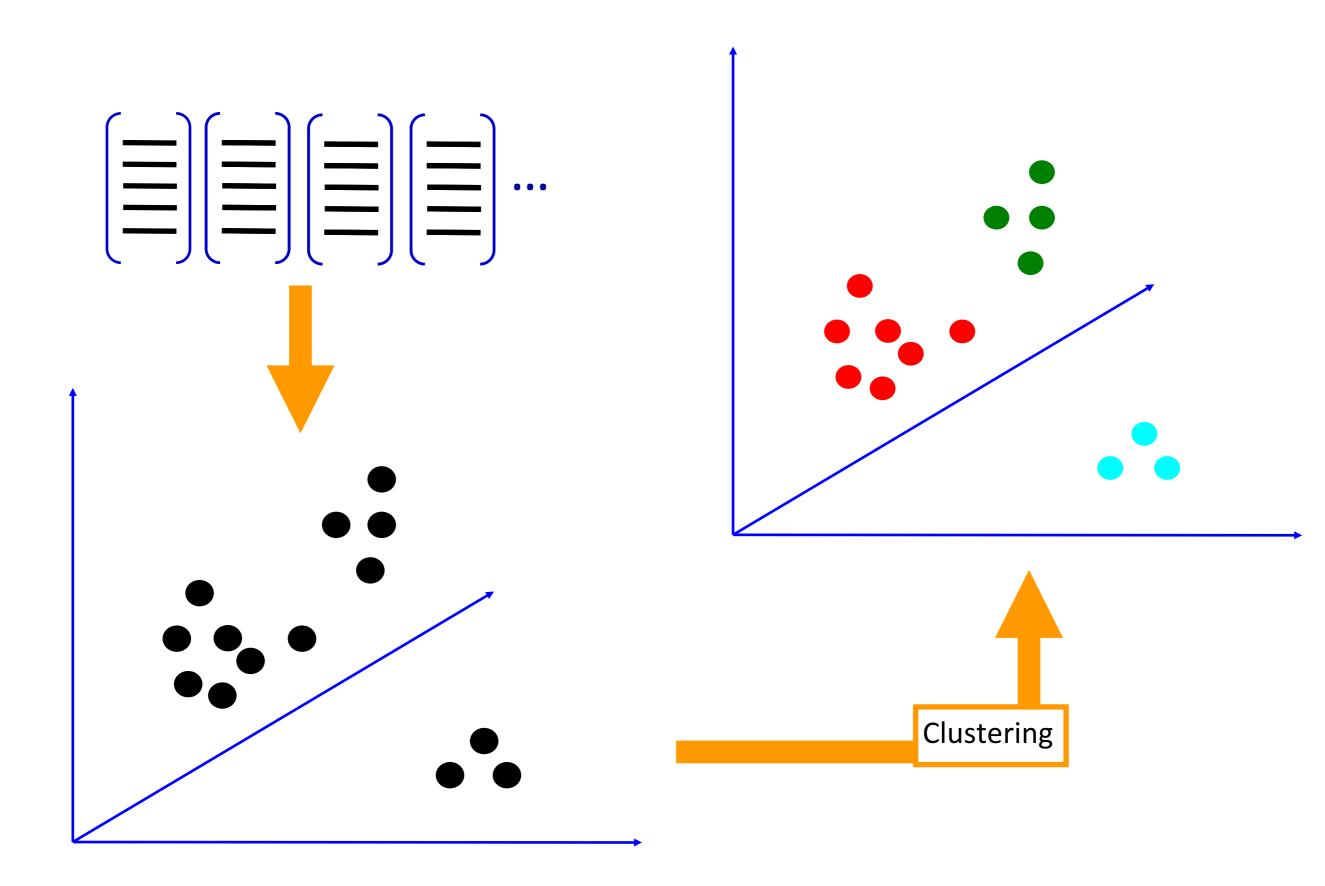
[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

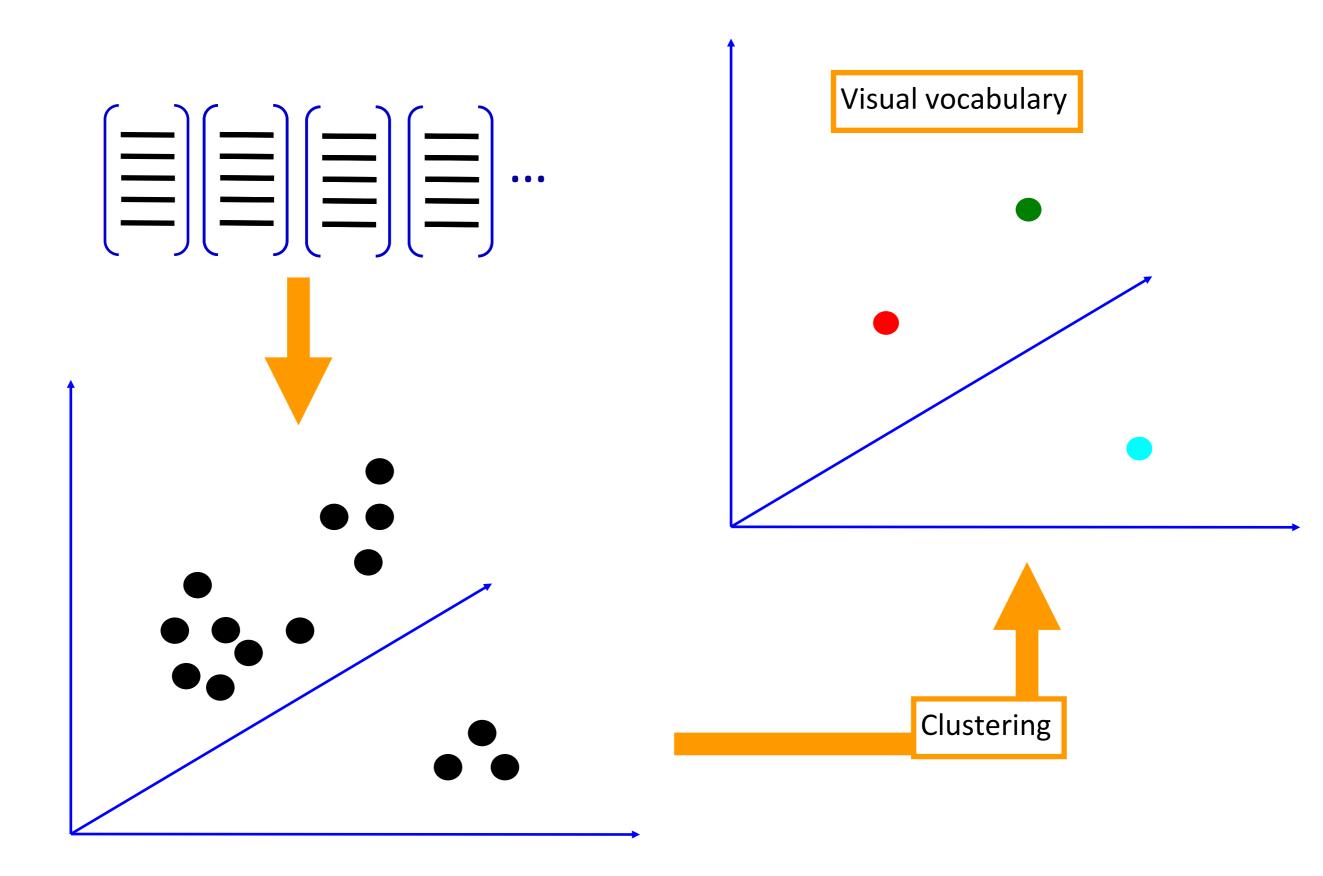




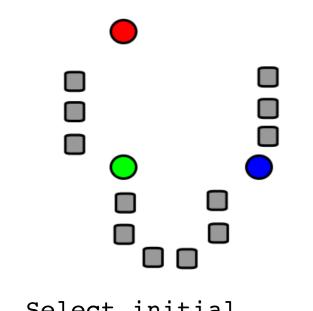
How do we learn the dictionary?



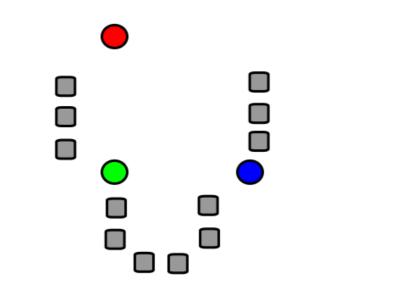




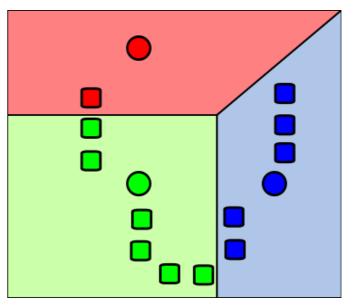
K-means clustering



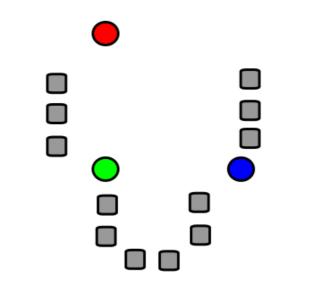
1. Select initial centroids at random



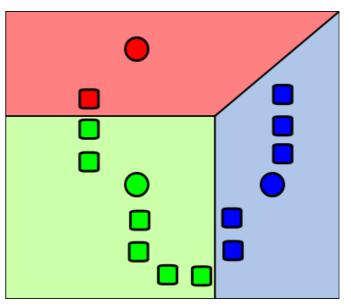
1. Select initial centroids at random



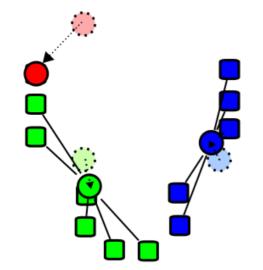
2. Assign each object to the cluster with the nearest centroid.



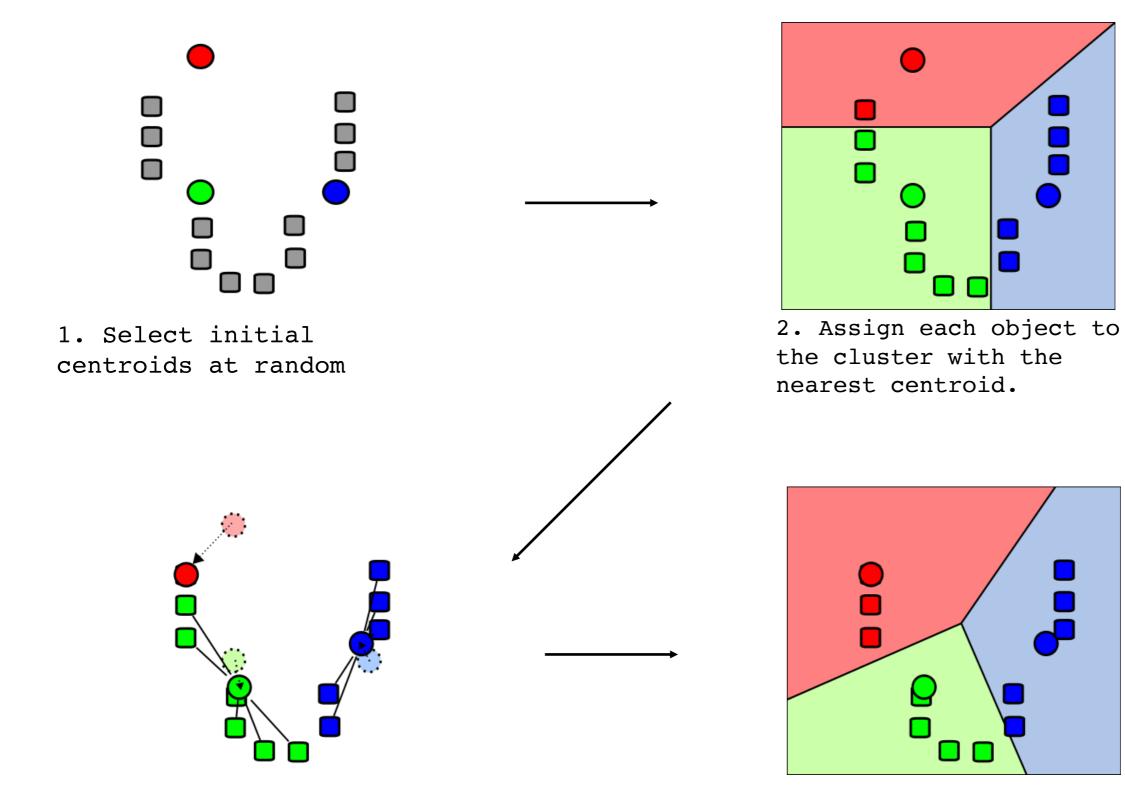
1. Select initial centroids at random



2. Assign each object to the cluster with the nearest centroid.

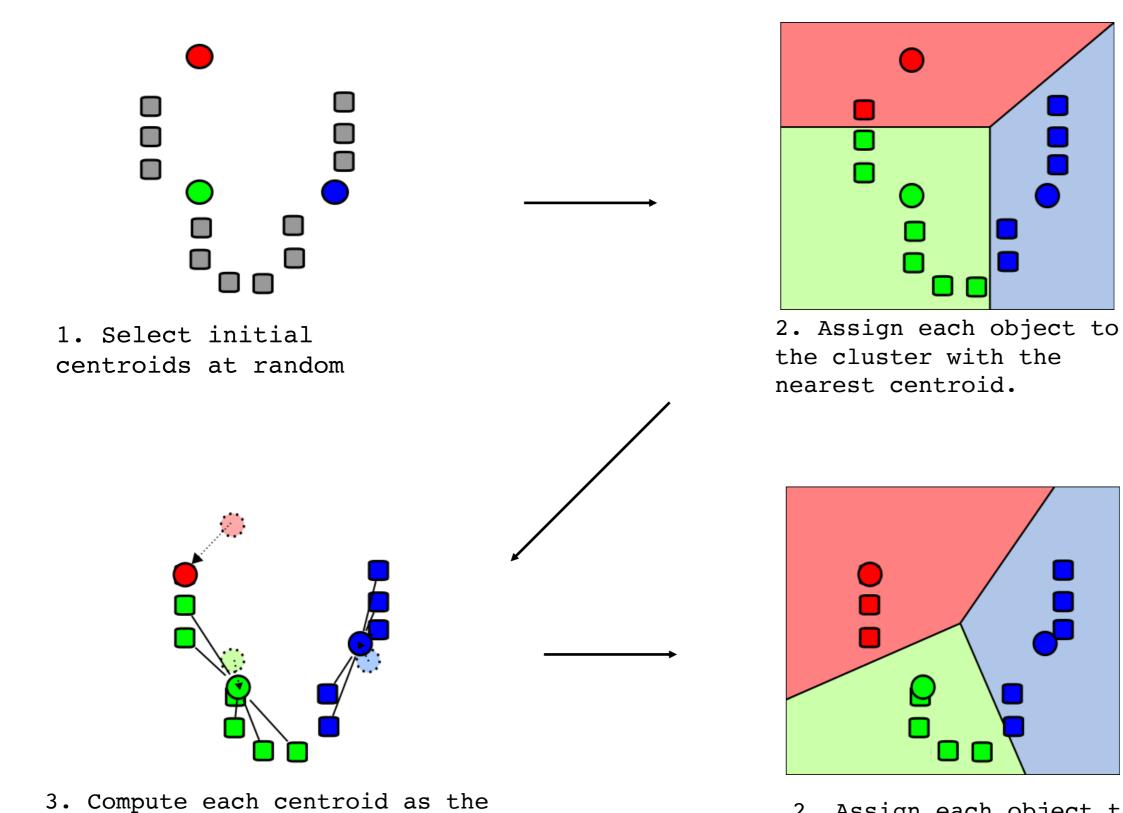


3. Compute each centroid as the mean of the objects assigned to it (go to 2)



3. Compute each centroid as the mean of the objects assigned to it (go to 2)

2. Assign each object to the cluster with the nearest centroid.



mean of the objects assigned to

it (go to 2)

2. Assign each object to the cluster with the nearest centroid.

Repeat previous 2 steps until no change

K-means Clustering

Given k:

1.Select initial centroids at random.

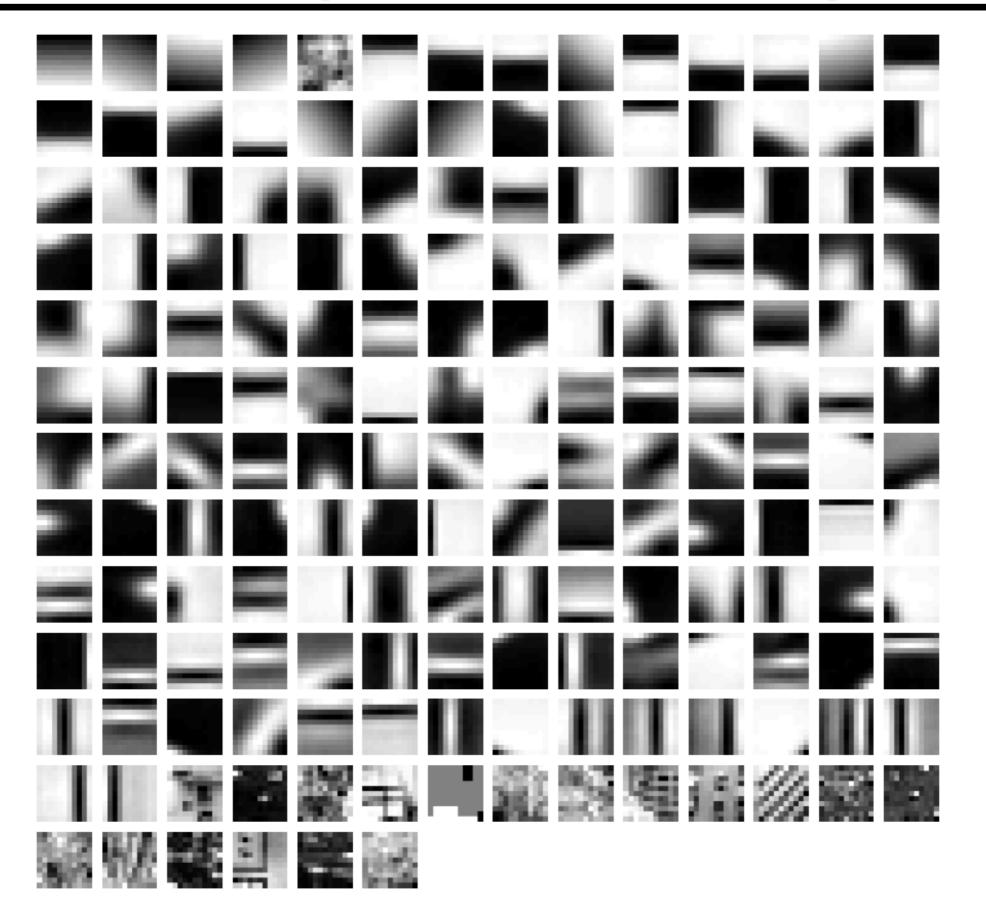
- 2.Assign each object to the cluster with the nearest centroid.
- 3.Compute each centroid as the mean of the objects assigned to it.

4.Repeat previous 2 steps until no change.

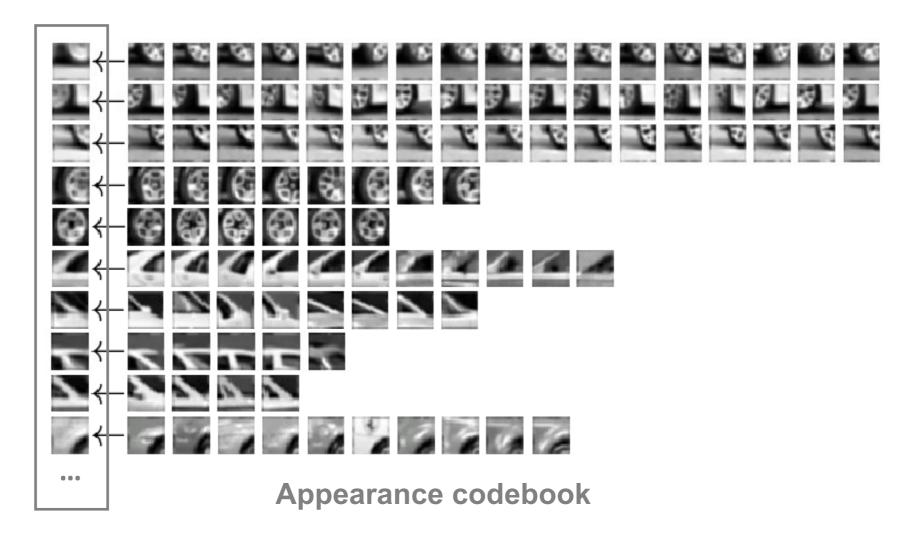
From what data should I learn the dictionary?

- Dictionary can be learned on separate training set
- Provided the training set is sufficiently representative, the dictionary will be "universal"

Example visual dictionary



Example dictionary



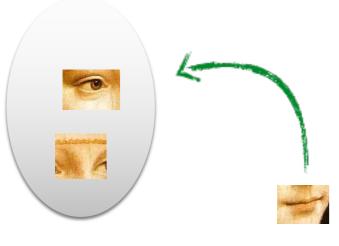
Another dictionary

Dictionary Learning: Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

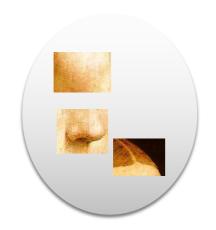
Classify: Train and test data using BOWs



1. Quantization: image features gets associated to a visual word (nearest cluster center)

Encode:

build Bags-of-Words (BOW) vectors for each image

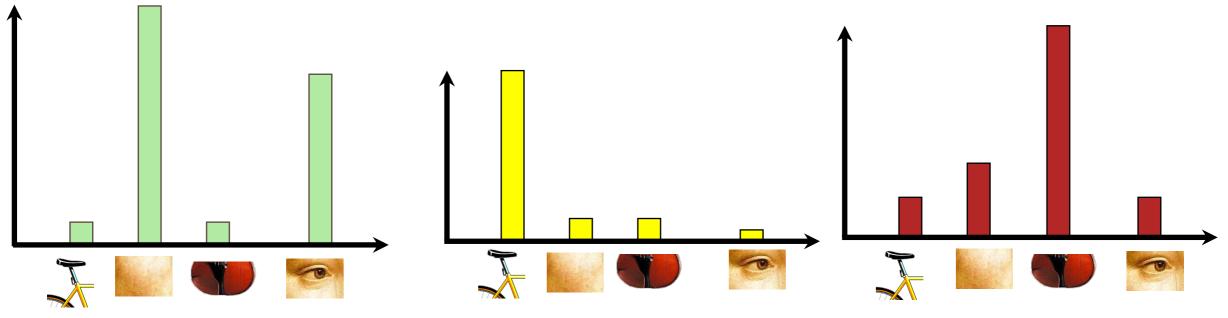


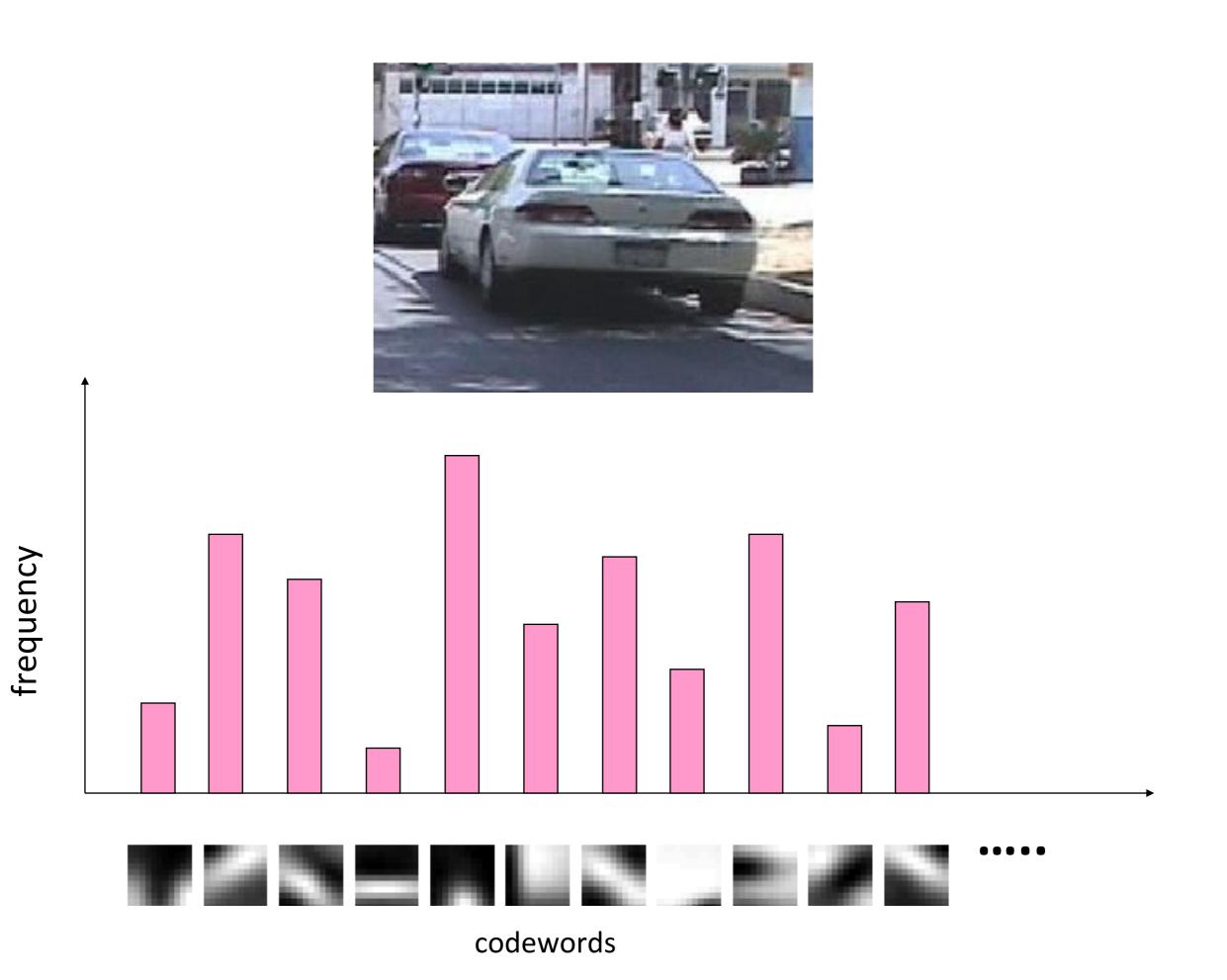
Encode:

build Bags-of-Words (BOW) vectors

for each image

2. Histogram: count the number of visual word occurrences

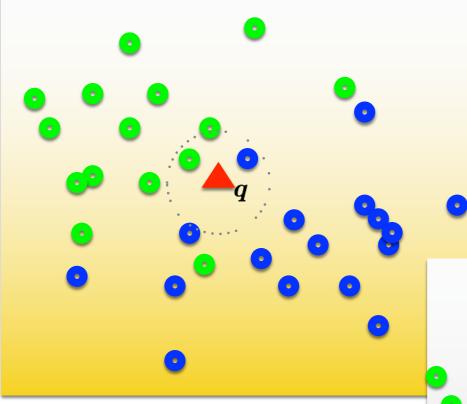




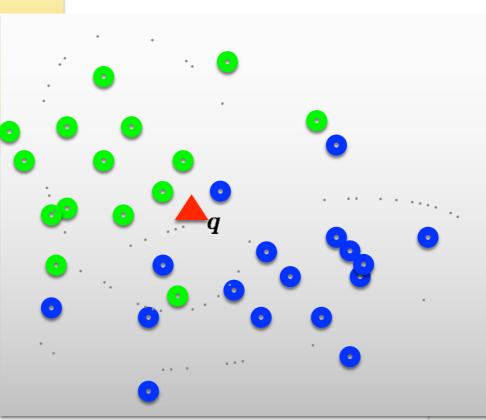
Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

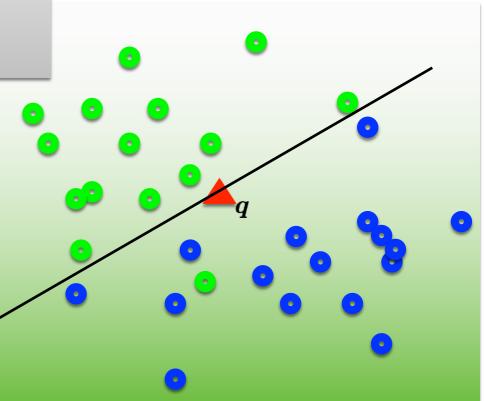


K nearest neighbors



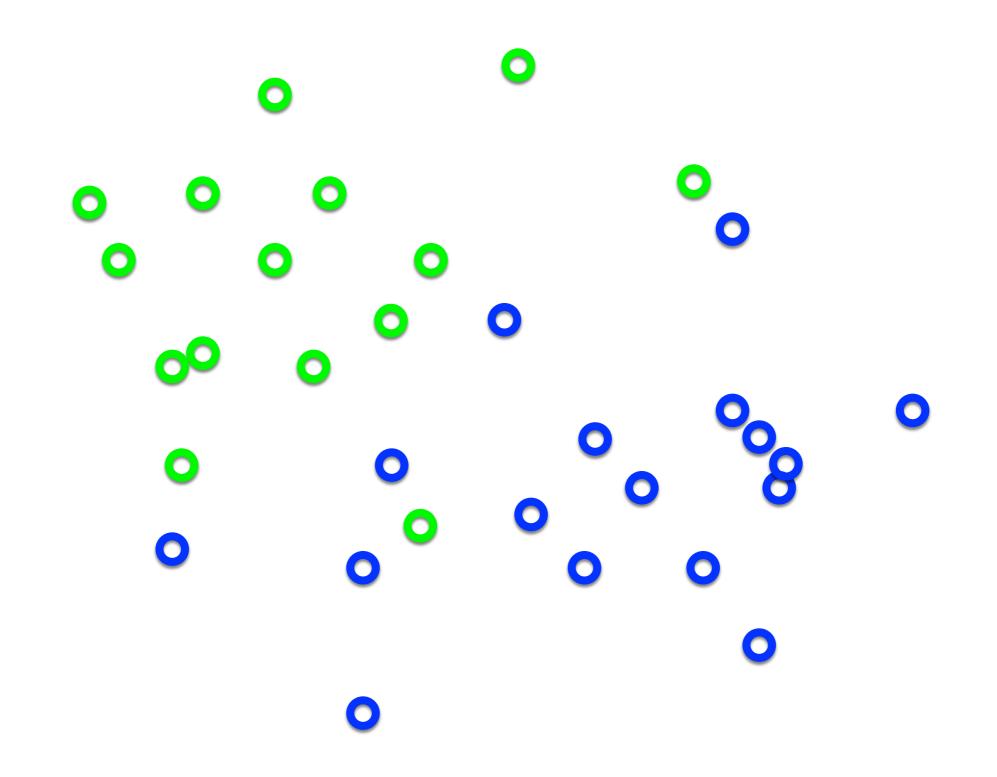
Naïve Bayes

Support Vector Machine

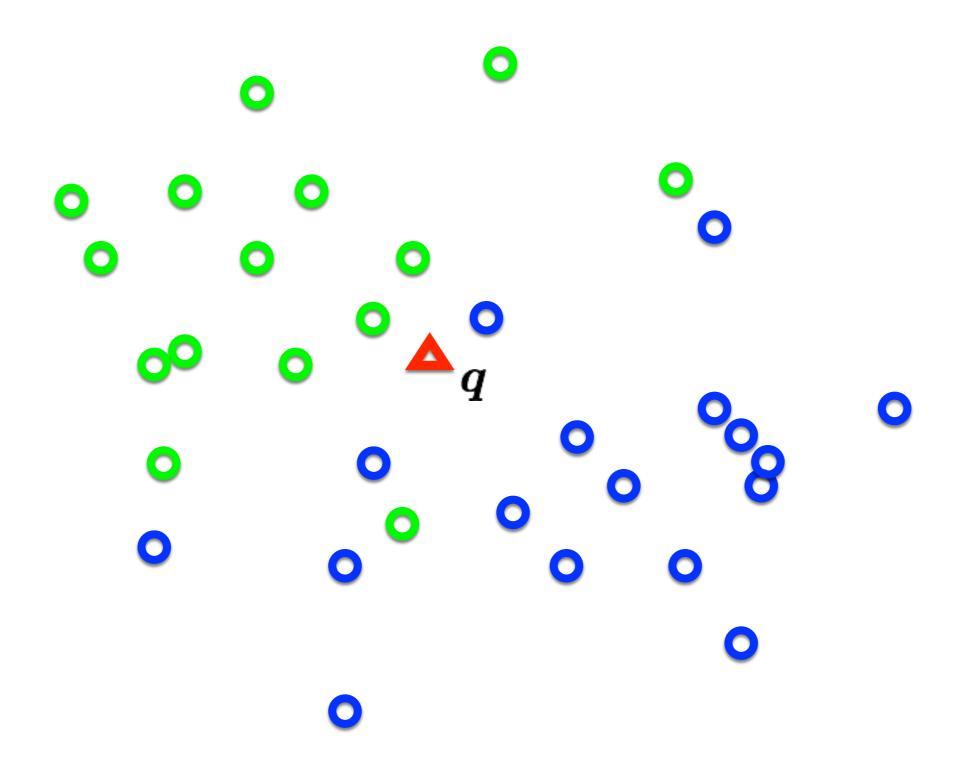


K nearest neighbors

Distribution of data from two classes

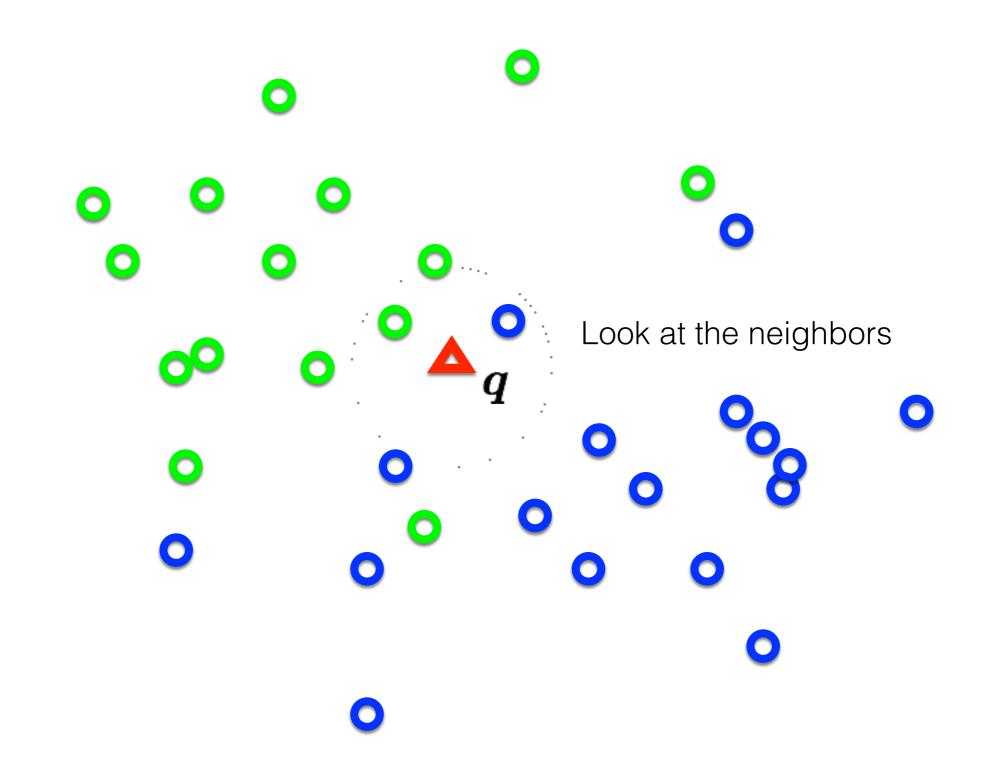


Distribution of data from two classes

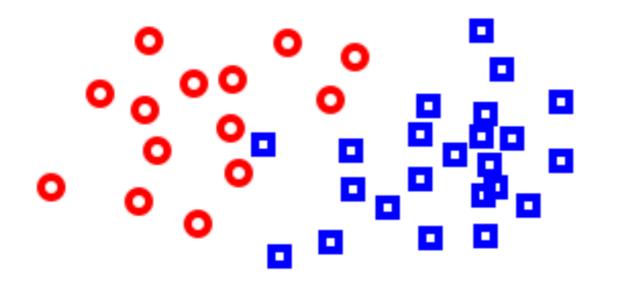


Which class does q belong too?

Distribution of data from two classes



K-Nearest Neighbor (KNN) Classifier



Non-parametric pattern classification approach

Consider a two class problem where each sample consists of two measurements (x,y).

For a given query point q, assign the class of the nearest neighbor

Compute the k nearest neighbors and assign the class by <u>majority vote</u>.

k = 1 k = 3 k = 3

Nearest Neighbor is competitive

40281508803277364755579284686500876/71127400776386420140578214 2241087634006230)171131099754 ð В Ò .3 a H Ø \mathcal{O} 090/ D ОЧ З ລ δ ч Ζ 4/992/8013613411/560707232572949812/61278000822922799275/34941856283

Test Error Rate (%)

MNIST Digit Recognition

- Handwritten digits
- 28x28 pixel images: d = 784
- 60,000 training samples
- 10,000 test samples

Yann LeCunn

Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskewee	d 2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1
2-layer NN, 300 hidden units	4.7
2-layer NN, 300 HU, [deskewing]	1.6
LeNet-5, [distortions]	0.8
Boosted LeNet-4, [distortions]	0.7

What is the best distance metric between data points?

- Typically Euclidean distance
- Locality sensitive distance metrics
- Important to normalize.
 Dimensions have different scales

How many K?

- Typically k=1 is good
- Cross-validation (try different k!)

Distance metrics

$$D(oldsymbol{x},oldsymbol{y}) = \sqrt{(x_1-y_1)^2 + \cdots + (x_N-y_N)^2}$$
 Euclidean

$$D(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} = \frac{x_1 y_1 + \dots + x_N y_N}{\sqrt{\sum_n x_n^2} \sqrt{\sum_n y_n^2}}$$
Cosine

$$D(x, y) = \frac{1}{2} \sum_{n} \frac{(x_n - y_n)^2}{(x_n + y_n)}$$

Chi-squared

Choice of distance metric

• Hyperparameter

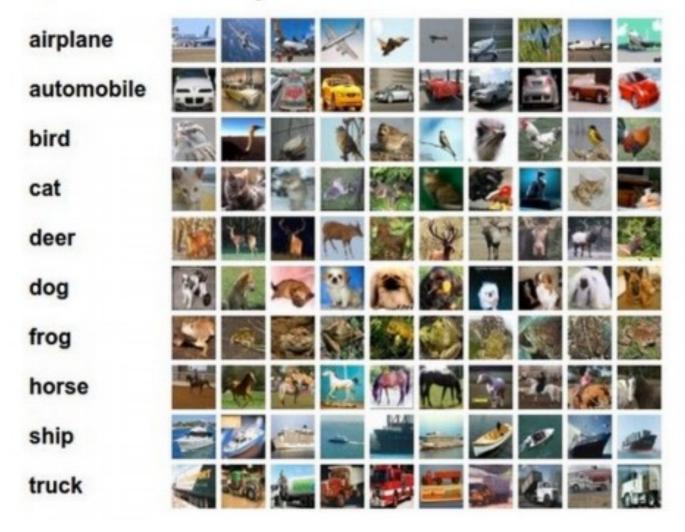
L1 (Manhattan) distance

- L2 (Euclidean) distance

- Two most commonly used special cases of p-norm $\left|\left|x\right|\right|_{p} = \left(\left|x_{1}\right|^{p} + \cdots + \left|x_{n}\right|^{p}\right)^{\frac{1}{p}} \quad p \geq 1, x \in \mathbb{R}^{n}$

CIFAR-10 and NN results

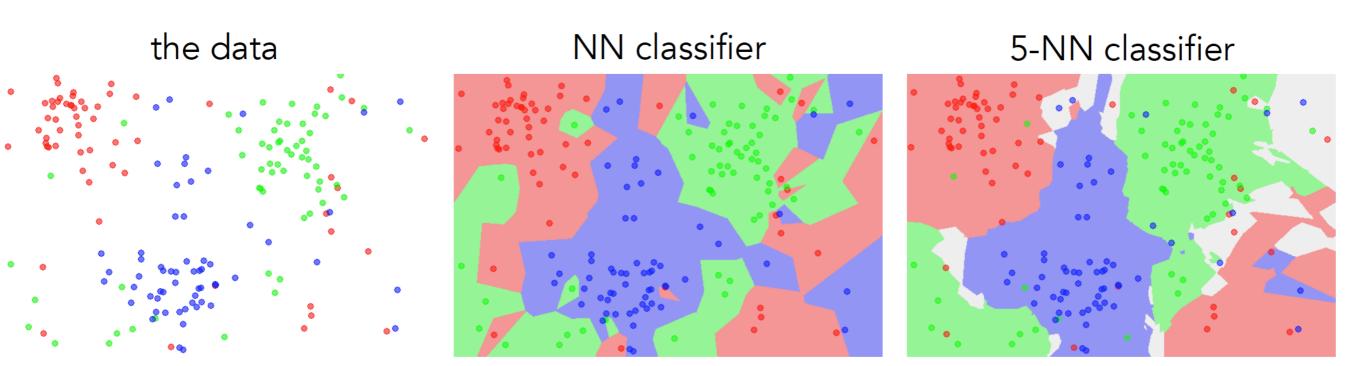
Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.



For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

- Find the k closest points from training data
- Labels of the k points "vote" to classify



Hyperparameters

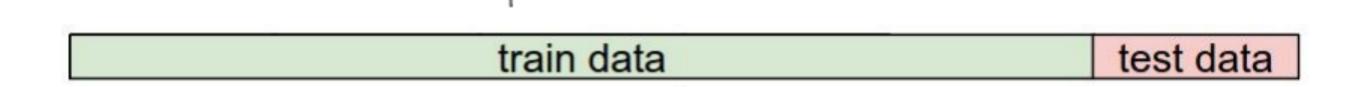
- What is the best distance to use?
- What is the best value of k to use?

• i.e., how do we set the hyperparameters?

- Very problem-dependent
- Must try them all and see what works best

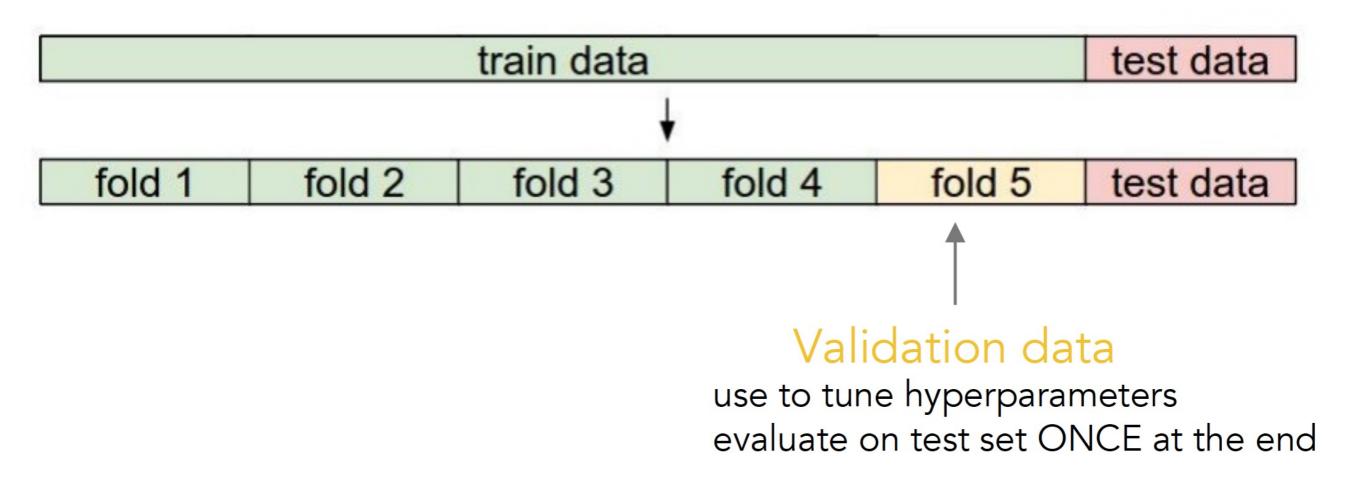
Try out what hyperparameters work best on test set.

Try out what hyperparameters work best on test set.

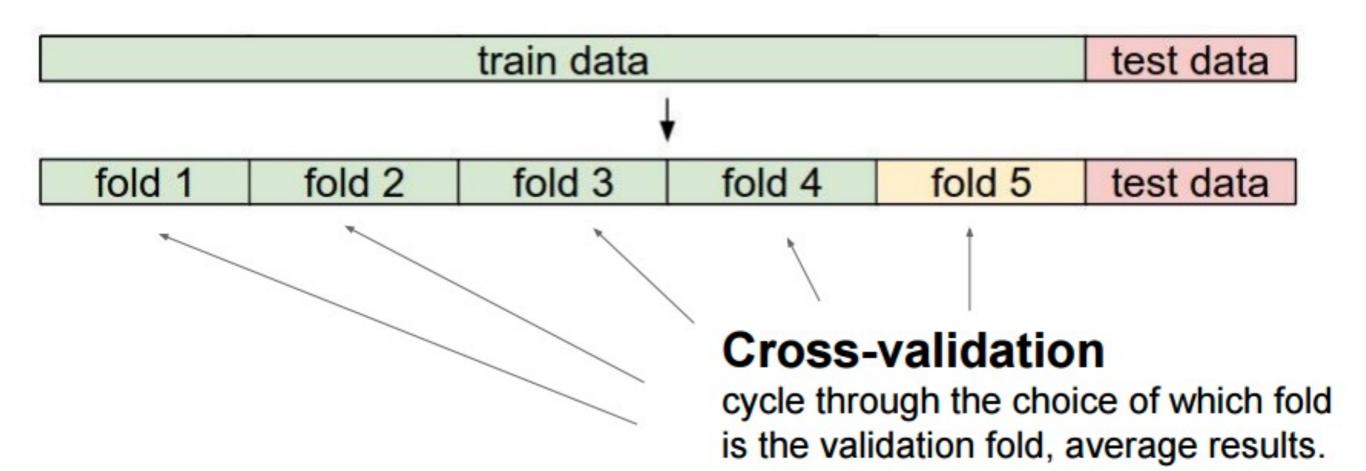


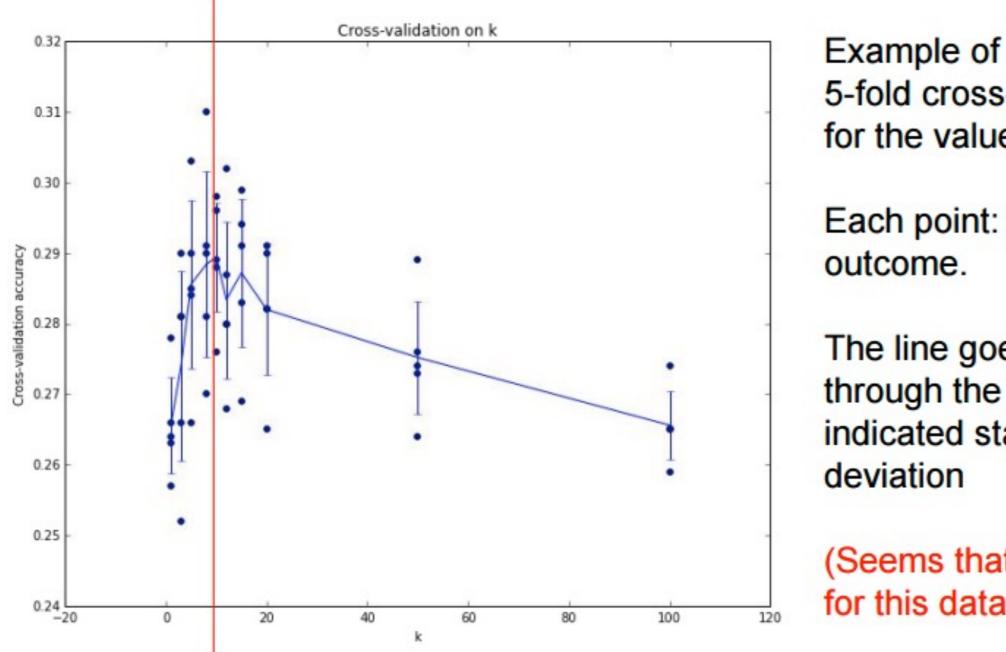
VERY BAD IDEA! The test set is a proxy for the generalization performance! Use only VERY SPARINGLY, at the end.

Validation



Cross-validation





5-fold cross-validation for the value of k.

Each point: single

The line goes through the mean, bars indicated standard

(Seems that k ~= 7 works best for this data)

How to pick hyperparameters?

Methodology

Train, validate, test

- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability

Pros

• simple yet effective

Cons

- search is expensive (can be sped-up)
- storage requirements
- difficulties with high-dimensional data

kNN -- Complexity and Storage

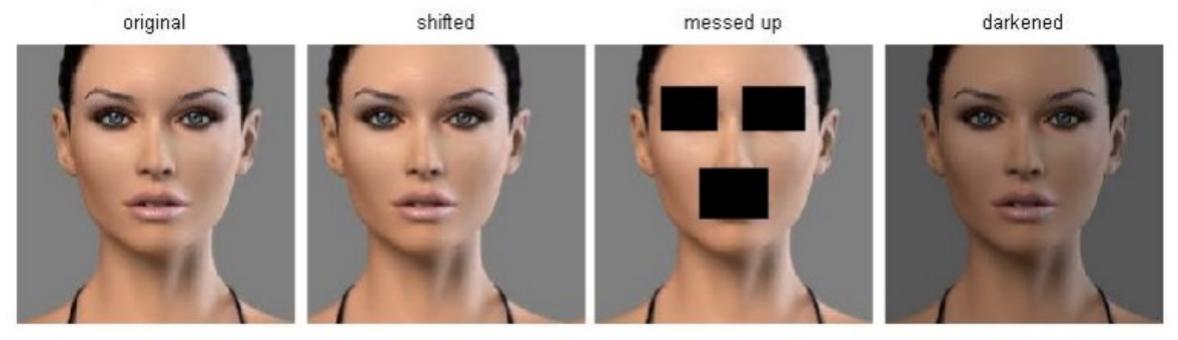
• N training images, M test images

- Training: O(1)
- Testing: O(MN)

- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)

k-Nearest Neighbor on images never used.

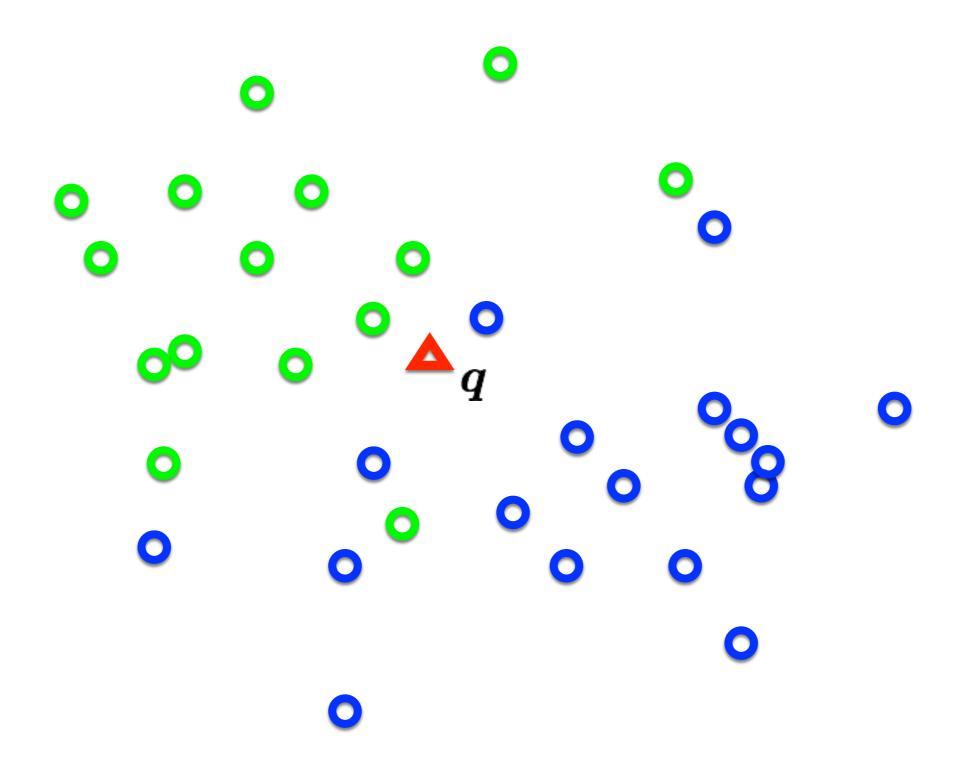
- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive



(all 3 images have same L2 distance to the one on the left)

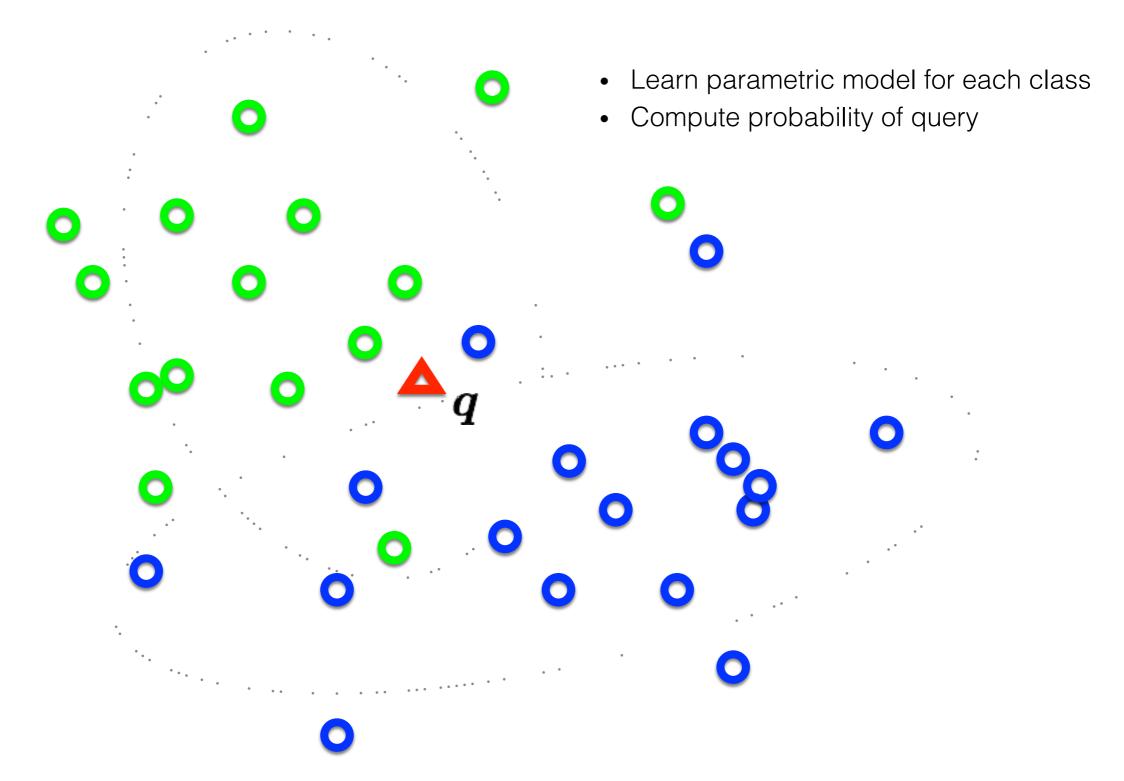
Naïve Bayes

Distribution of data from two classes



Which class does q belong too?

Distribution of data from two classes



This is called the posterior.

the probability of a class z given the observed features X

 $p(\boldsymbol{z}|\boldsymbol{X})$

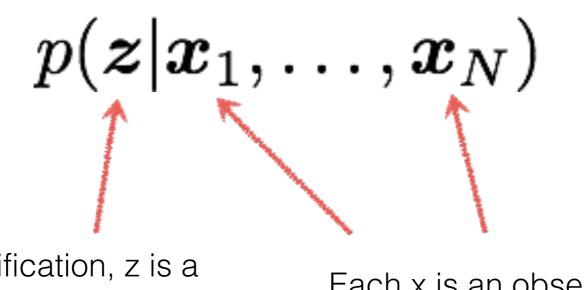
For classification, z is a discrete random variable (e.g., car, person, building)

X is a set of observed features (e.g., features from a single image)

(it's a function that returns a single probability value)

This is called the posterior:

the probability of a class z given the observed features X



For classification, z is a discrete random variable (e.g., car, person, building)

Each x is an observed feature (e.g., visual words)

(it's a function that returns a single probability value)

Recall:

The posterior can be decomposed according to **Bayes' Rule**

$$p(A|B) = rac{p(B|A)p(A)}{p(B)}$$

In our context...

$$p(oldsymbol{z}|oldsymbol{x}_1,\ldots,oldsymbol{x}_N) = rac{p(oldsymbol{x}_1,\ldots,oldsymbol{x}_N|oldsymbol{z})p(oldsymbol{z})}{p(oldsymbol{x}_1,\ldots,oldsymbol{x}_N)}$$

The naive Bayes' classifier is solving this optimization

 $\hat{z} = \arg \max p(z|X)$ $z \in \mathbf{Z}$

MAP (maximum a posteriori) estimate

$$\hat{z} = \operatorname*{arg\,max}_{z \in \boldsymbol{\mathcal{Z}}} \frac{p(\boldsymbol{X}|z)p(z)}{p(\boldsymbol{X})}$$

Bayes' Rule

$$\hat{z} = rg \max_{z \in \mathcal{Z}} p(\mathbf{X}|z) p(z)$$

Remove constants

To optimize this...we need to compute this J

Compute the likelihood...

A naive Bayes' classifier assumes all features are conditionally independent

$$egin{aligned} p(oldsymbol{x}_1,\ldots,oldsymbol{x}_N|oldsymbol{z}) &= p(oldsymbol{x}_1|oldsymbol{z}) p(oldsymbol{x}_2|oldsymbol{z}) p(oldsymbol{x}_3,\ldots,oldsymbol{x}_N|oldsymbol{z}) \ &= p(oldsymbol{x}_1|oldsymbol{z}) p(oldsymbol{x}_2|oldsymbol{z}) \cdots p(oldsymbol{x}_N|oldsymbol{z}) \end{aligned}$$

To compute the MAP estimate

Given (1) a set of known parameters

(2) observations $\{x_1, x_2, \dots, x_N\}$

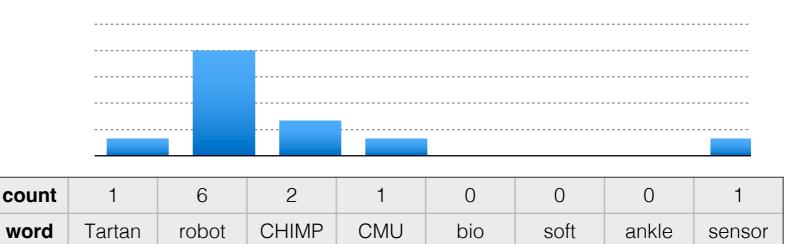
Compute which z has the largest probability

 $p(\boldsymbol{z}) \quad p(\boldsymbol{x}|\boldsymbol{z})$

$$\hat{z} = rg\max_{z \in \mathbf{Z}} p(z) \prod_n p(x_n | z)$$

DARPA Selects Carnegie Me

	0 ,	funding to prepare for next December's finals. The team's four-limbed CMU Highly Intelligent Mobile Platform, or CHIMP, robot scored 18 out of a possible 32 points during the two-day trials. It demonstrated its ability to perform such tasks as removing debns, cutting a hole through a wall and closing a series of valves.	Ren foll imp The tha relate belt of a exp in li its
--	-----	---	---



0.0

0.0

0.09

0.0

0.09

$$p(X|z) = \prod_{v} p(x_v|z)^{c(w_v)}$$
$$= (0.09)^1 (0.55)^6 \cdots (0.09)^1$$

0.18

Numbers get really small so use log probabilities

0.55

 $\log p(X|z = \text{`grandchallenge'}) = -2.42 - 3.68 - 3.43 - 2.42 - 0.07 - 0.07 - 0.07 - 2.42 = -14.58$

 $\log p(X|z = \text{`softrobot'}) = -7.63 - 9.37 - 15.18 - 2.97 - 0.02 - 0.01 - 0.02 - 2.27 = -37.48$

* typically add pseudo-counts (0.001)

** this is an example for computing the likelihood, need to multiply times prior to get posterior

p(xlz)

0.09

the agency as one of eight closing a series of valves. its

Tartan Tim

of

materials,

a rigid

(PAMs),

Th

ofa

bel

soft that

artificial the

control exp

Bio-Inspired Robotic Device PITTSBURGH-A soft, BioSensics, developed an Res wearable device that active orthotic device foll mimics the muscles, using soft plastics and imp

rehabilitation of exoskeleton. The

an assistant professor of lightweight sensors and

http://www.fodey.com/generators/newspaper/snippet.asp

Mellon University. Park, software, made it possible in I working with collaborators for the robotic device to its at Harvard University, the achieve natural motions in

patients with ankle-foot materials, combined with rela

tendons and ligaments of composite

disorders such as drop pneumatic

robotics at Camegie advanced

foot, said Yong-Lae Park, muscles

University of Southern the ankle MIT and

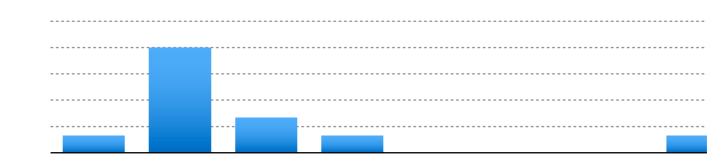
the lower leg could aid in instead

teams eligible for DARPA

Monday, January 20, 2014

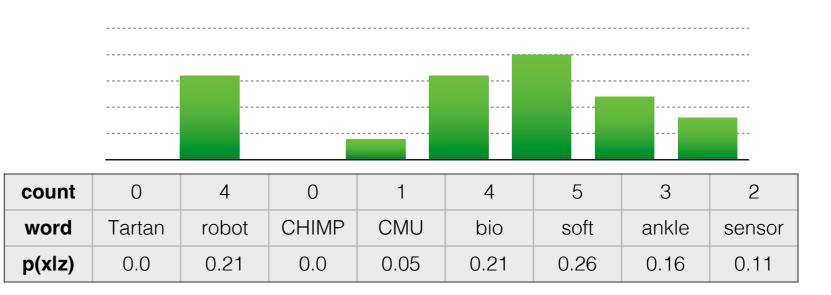
the

California



count	1	6	2	1	0	0	0	1
word	Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor
p(xlz)	0.09	0.55	0.18	0.09	0.0	0.0	0.0	0.09

 $\log p(X|z=grand challenge) = -14.58$ $\log p(X|z=bio inspired) = -37.48$



 $\log p(X|z=grand challenge) = -94.06$ $\log p(X|z=bio inspired) = -32.41$

* typically add pseudo-counts (0.001)

** this is an example for computing the likelihood, need to multiply times prior to get posterior

Support Vector Machine

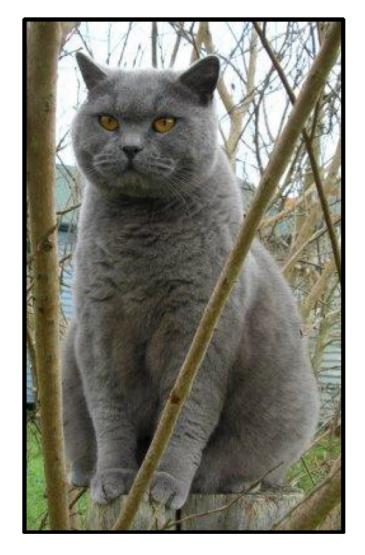
Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

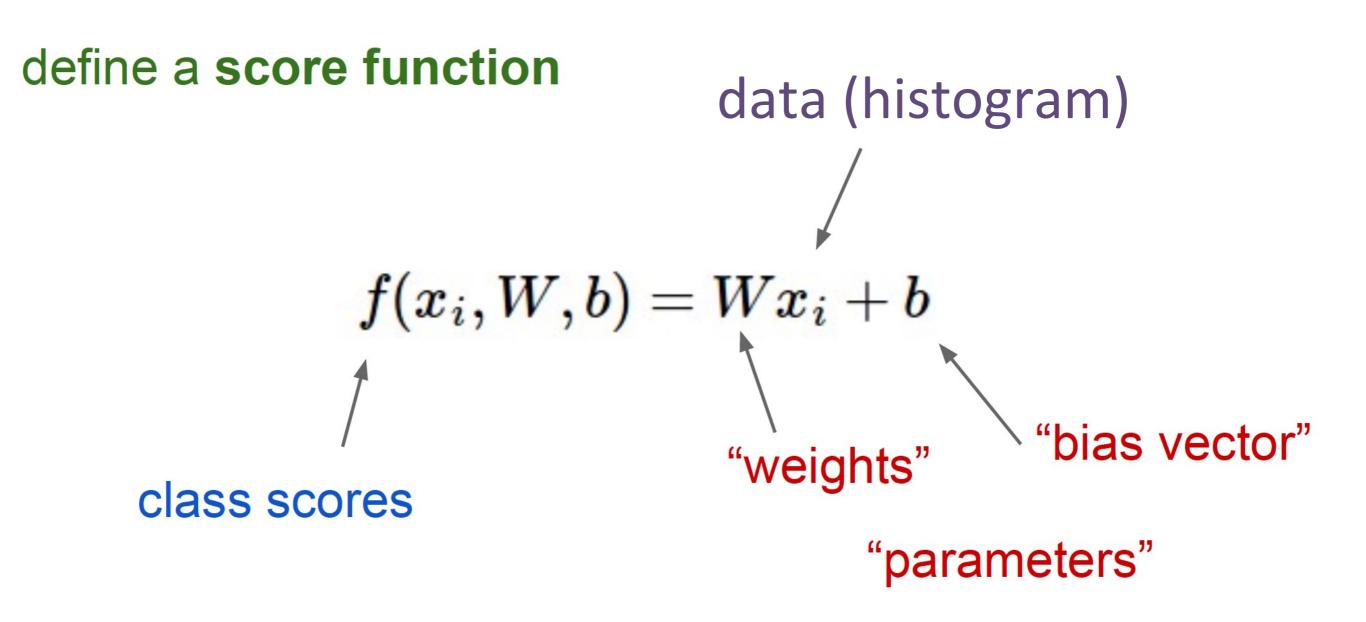
cat

Score function

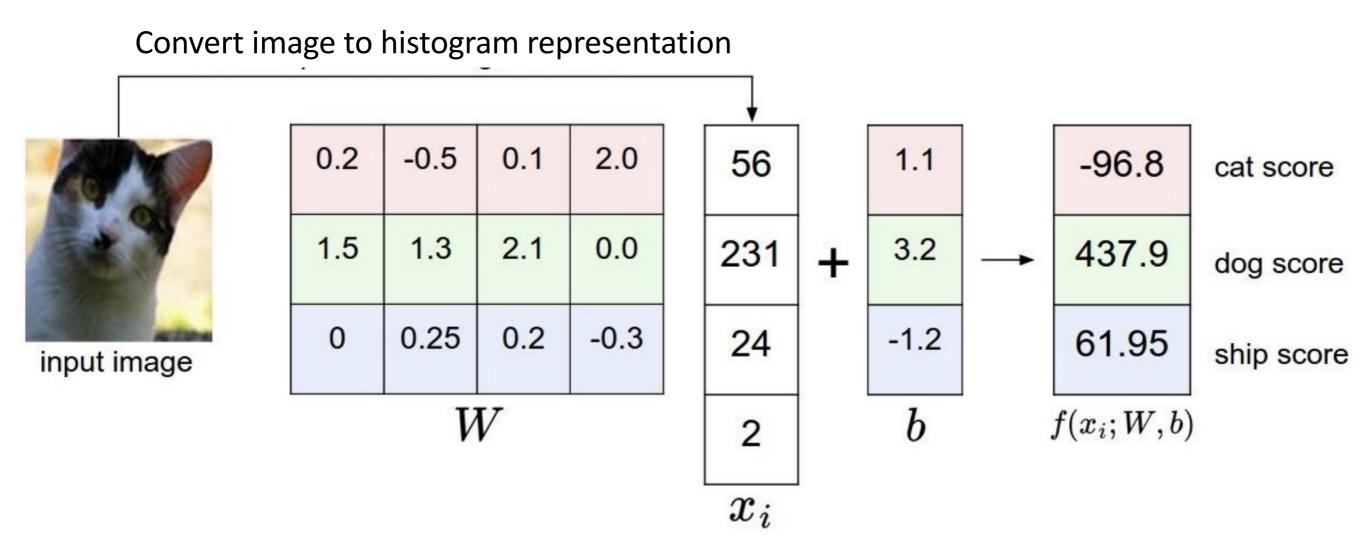
class scores



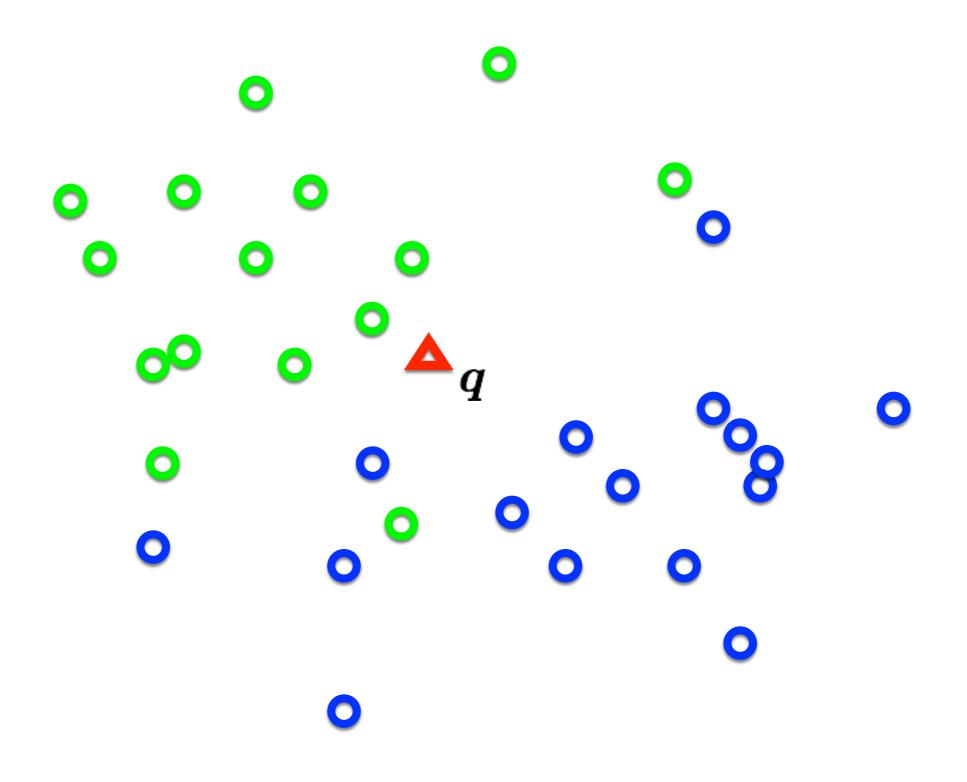
Linear Classifier



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

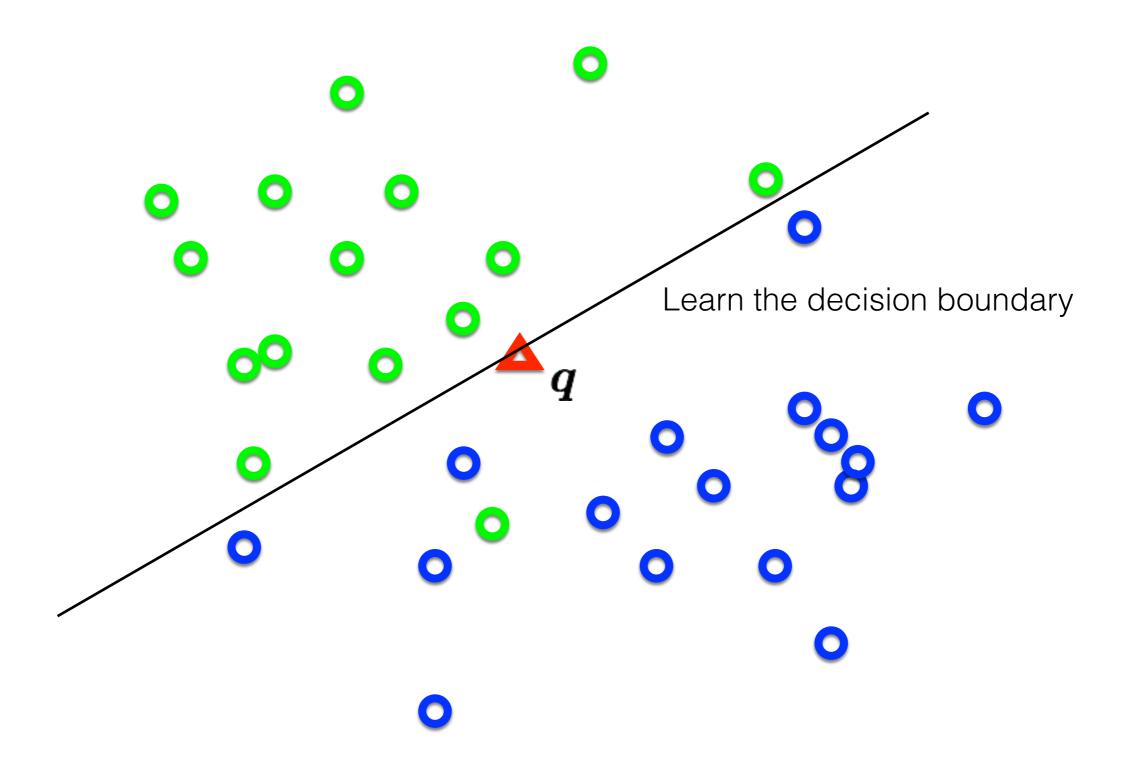


Distribution of data from two classes



Which class does q belong too?

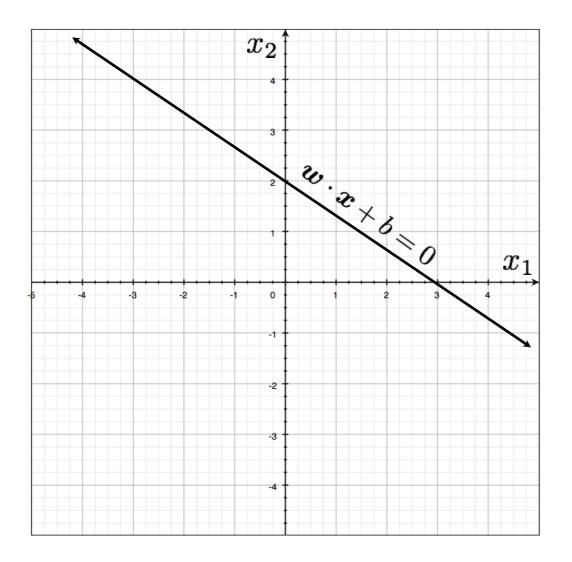
Distribution of data from two classes



First we need to understand hyperplanes...

Hyperplanes (lines) in 2D

 $w_1x_1 + w_2x_2 + b = 0$



a line can be written as dot product plus a bias

$$oldsymbol{w} \cdot oldsymbol{x} + b = 0$$

 $oldsymbol{w} \in \mathcal{R}^2$

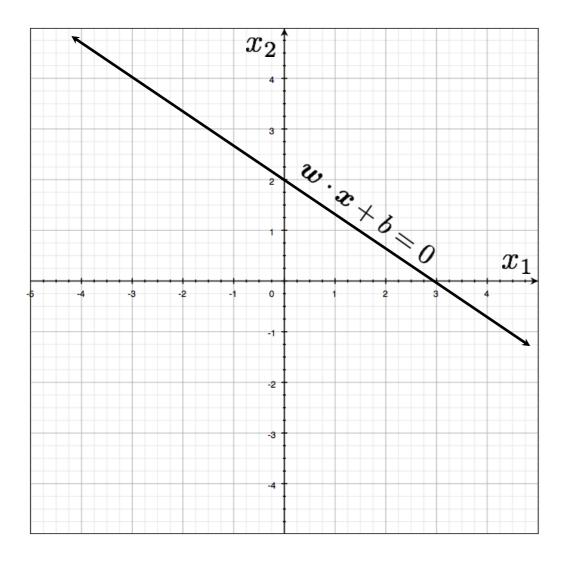
another version, add a weight 1 and push the bias inside

> $oldsymbol{w} \cdot oldsymbol{x} = 0$ $oldsymbol{w} \in \mathcal{R}^3$

Hyperplanes (lines) in 2D

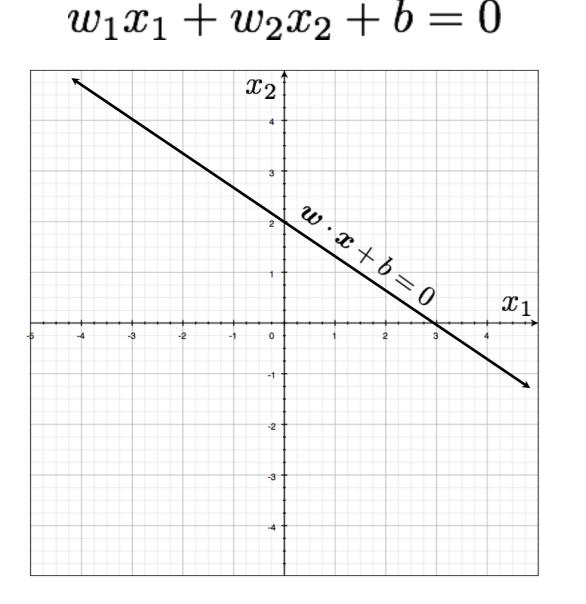
 $m{w}\cdotm{x}+b=0$ (offset/bias outside) $m{w}\cdotm{x}=0$ (offset/bias inside)

$$w_1 x_1 + w_2 x_2 + b = 0$$



Hyperplanes (lines) in 2D

 $m{w}\cdotm{x}+b=0$ (offset/bias outside) $m{w}\cdotm{x}=0$ (offset/bias inside)

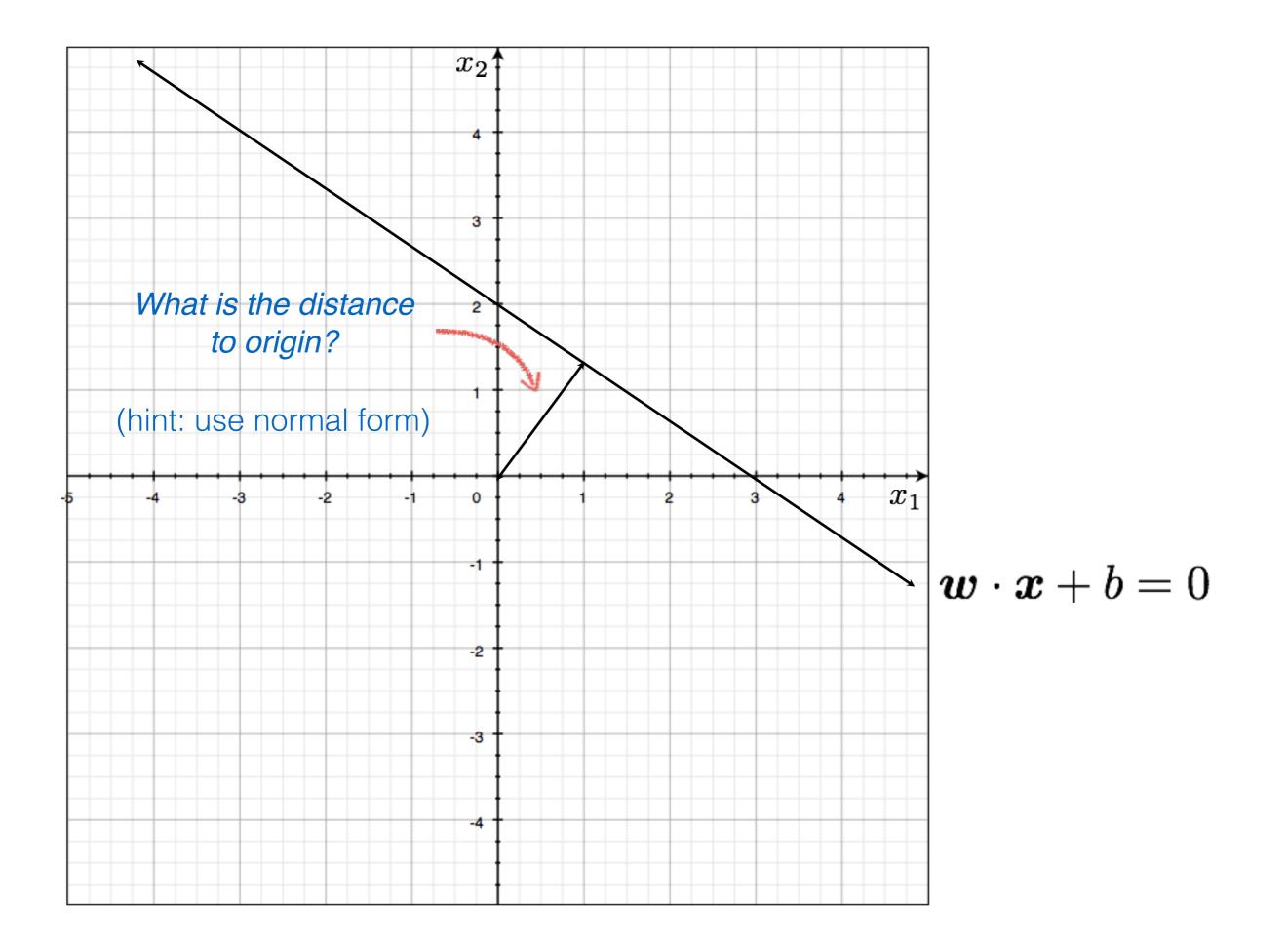


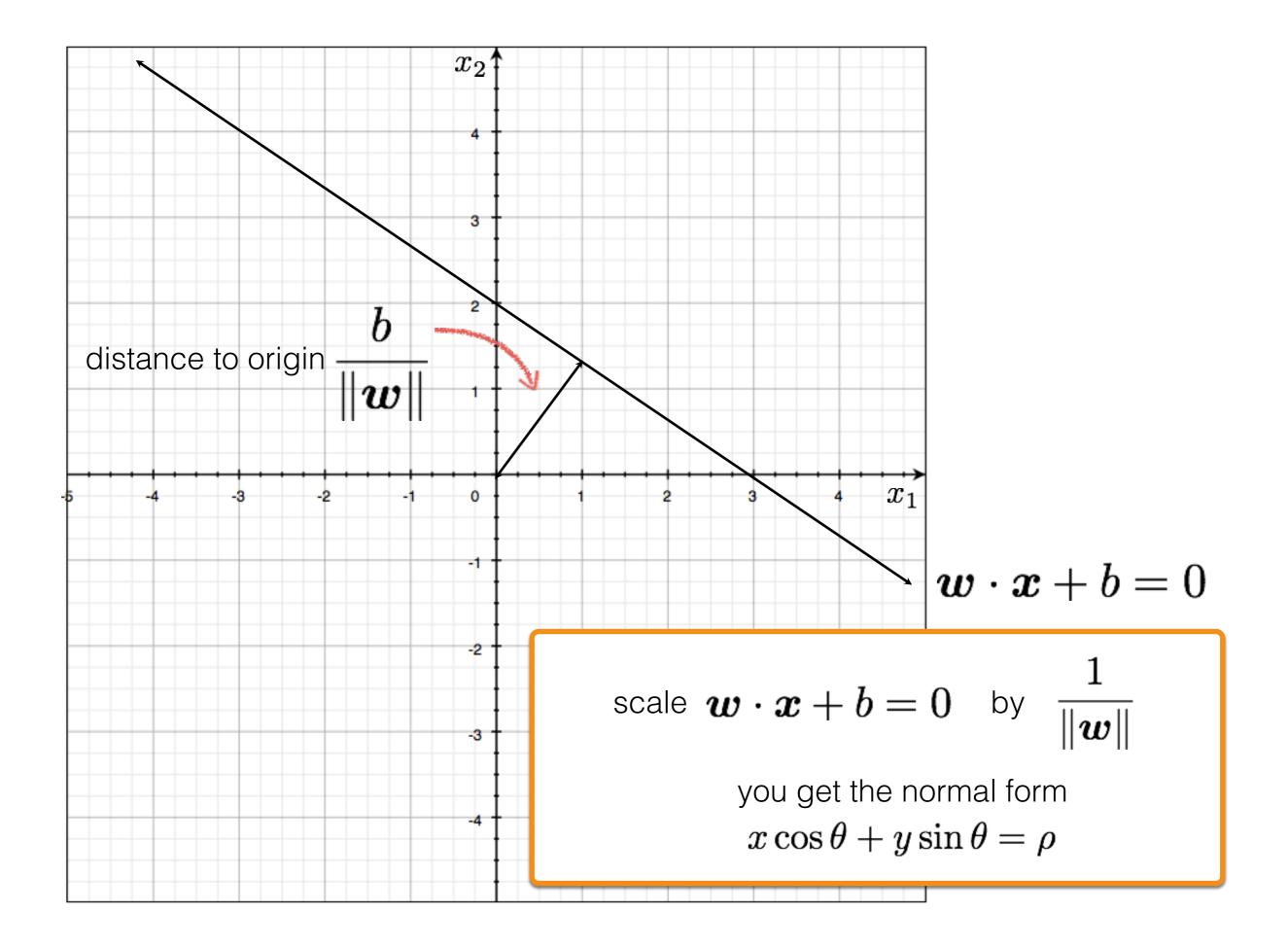
Important property: Free to choose any normalization of w

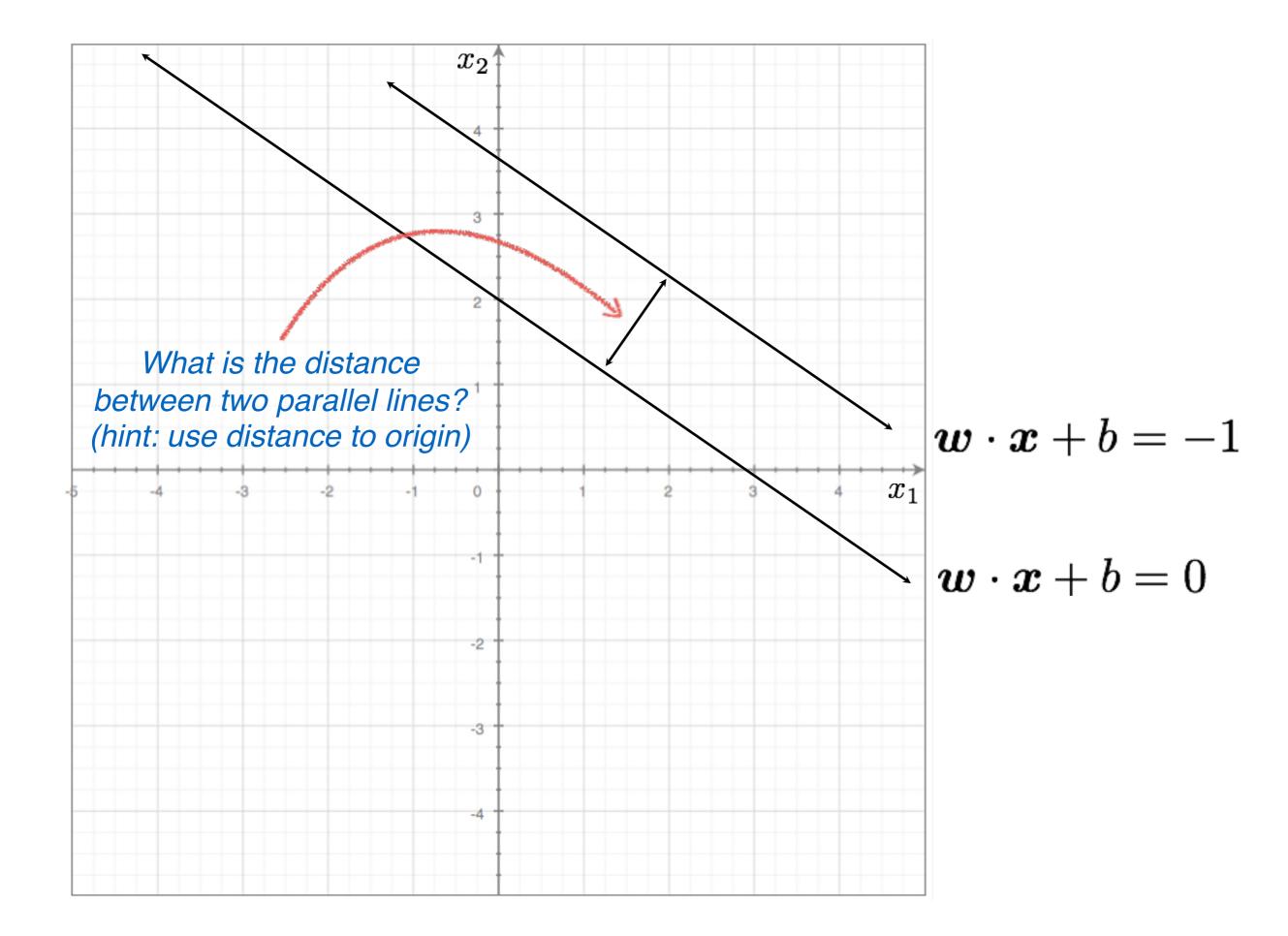
The line $w_1x_1 + w_2x_2 + b = 0$ and the line

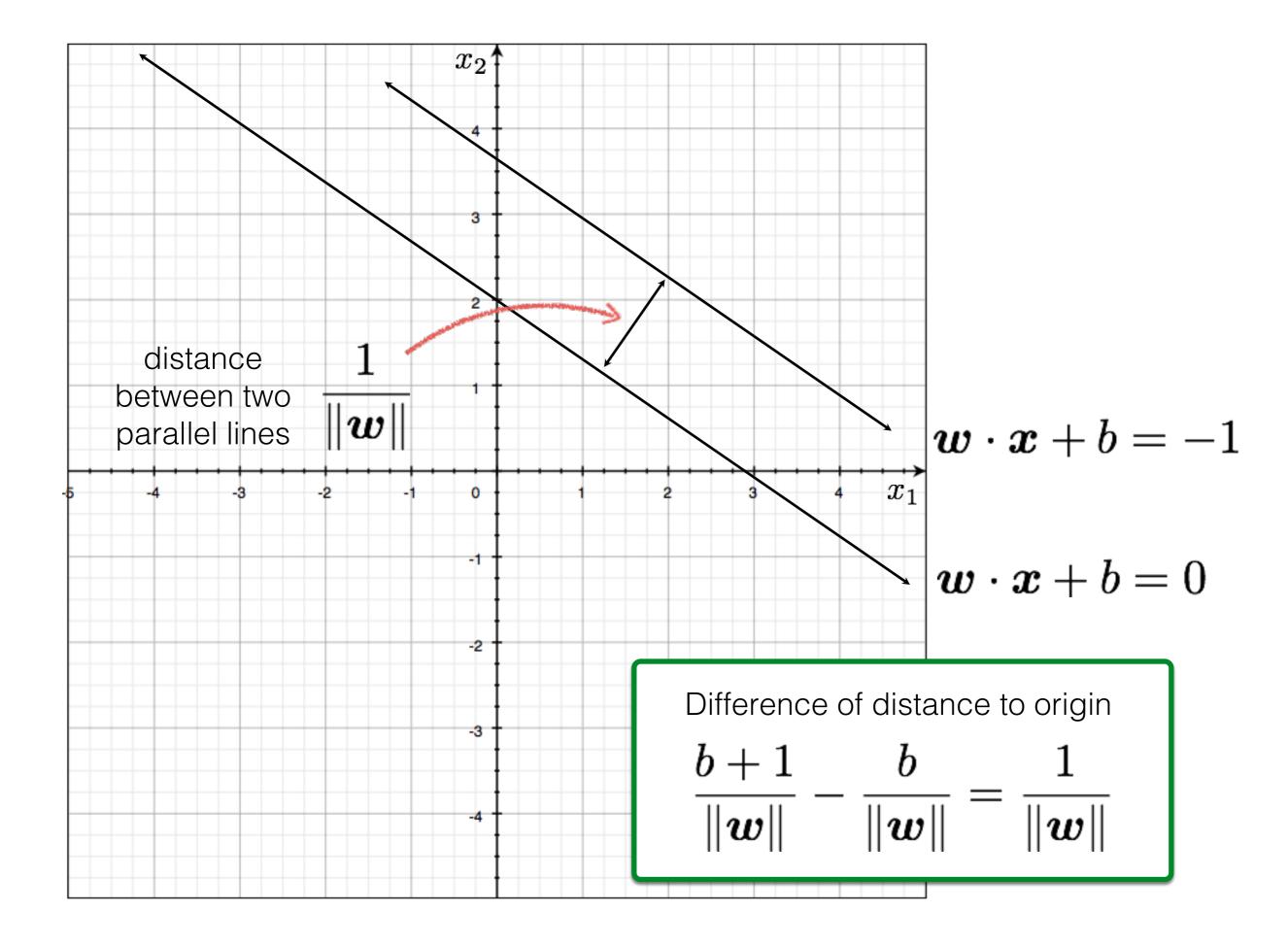
 $\lambda(w_1 x_1 + w_2 x_2 + b) = 0$

define the same line

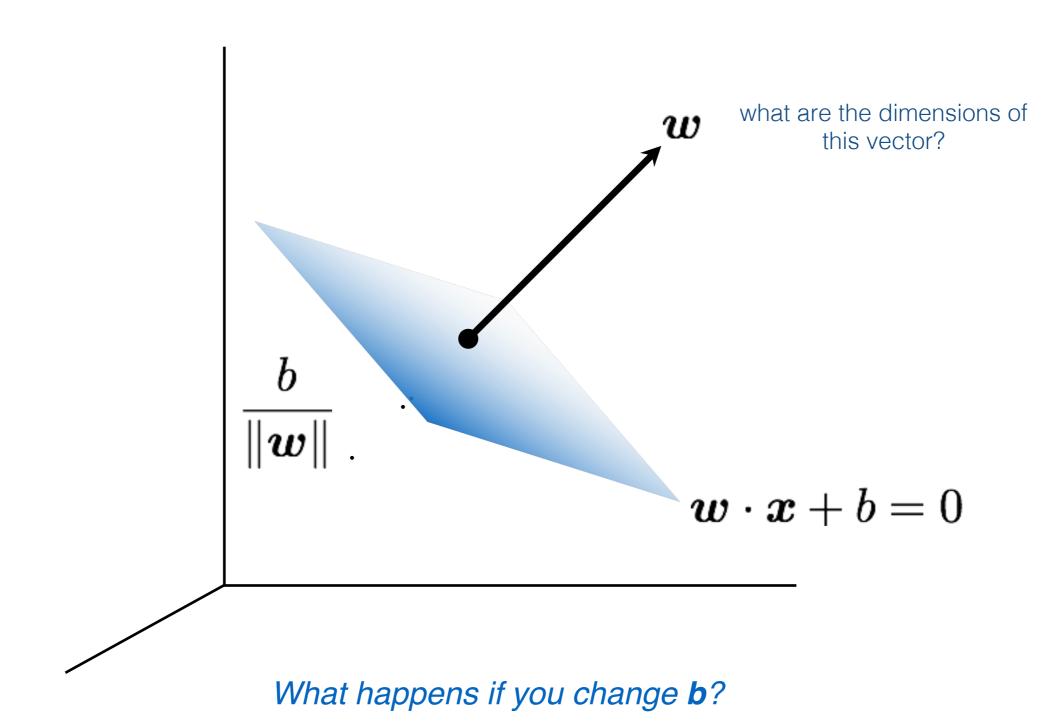


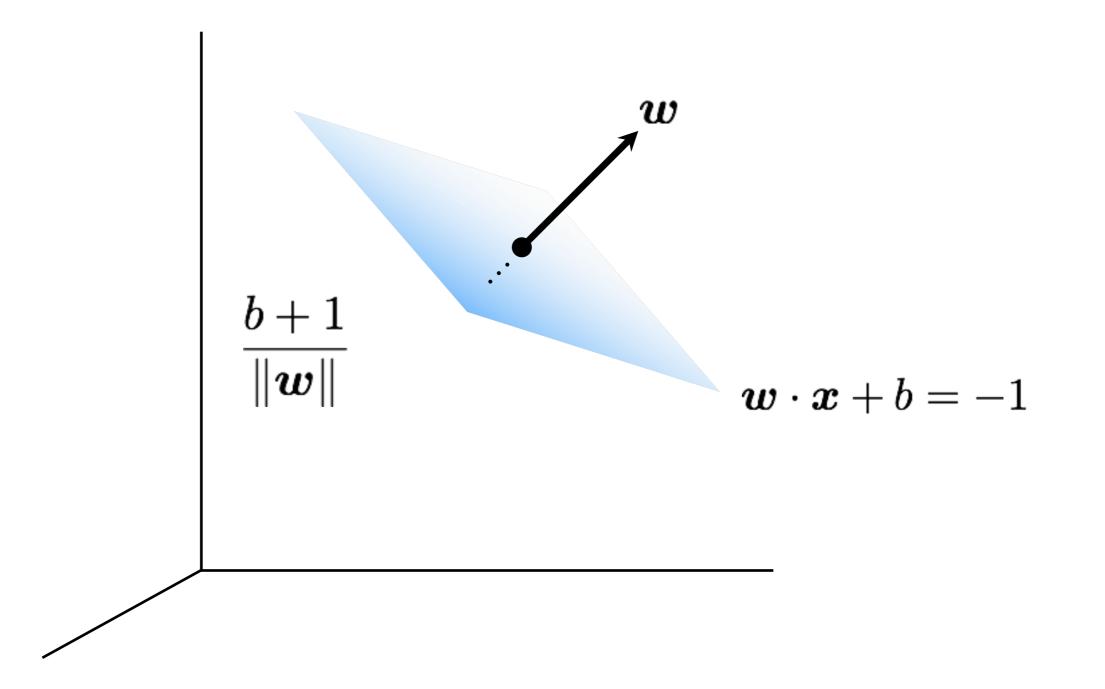


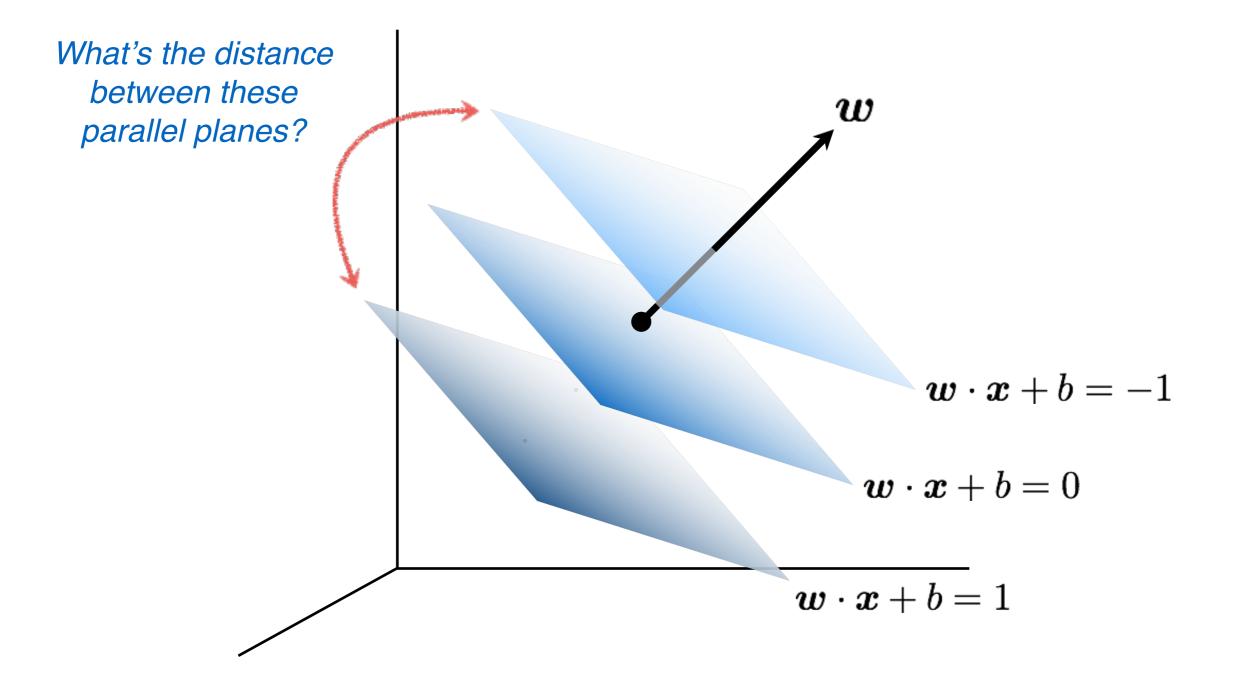


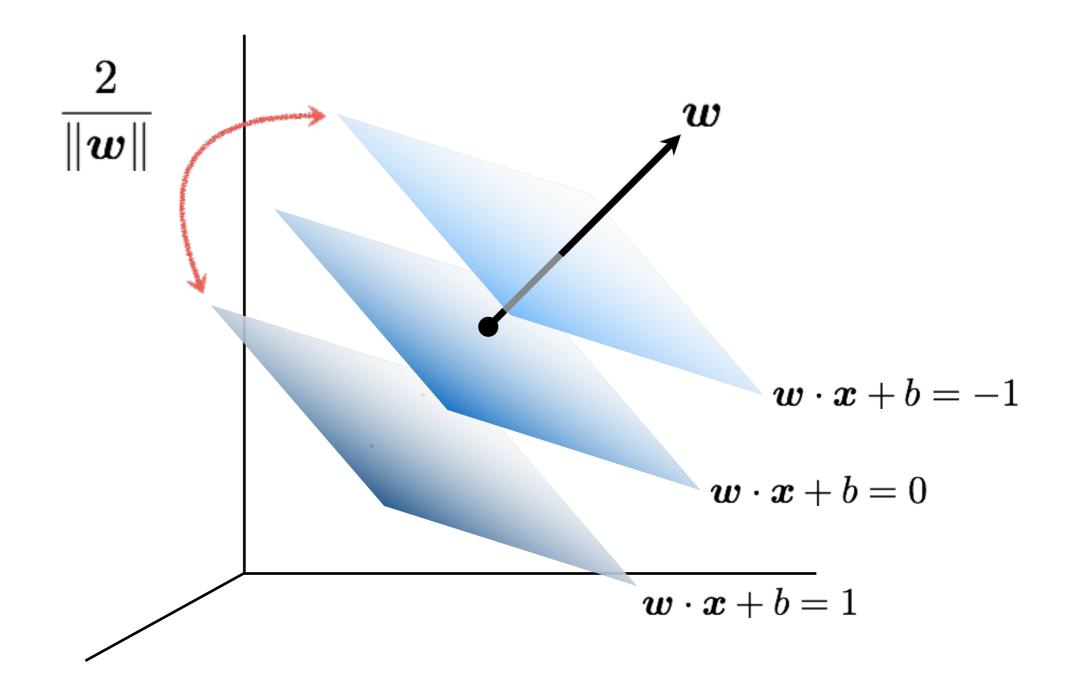


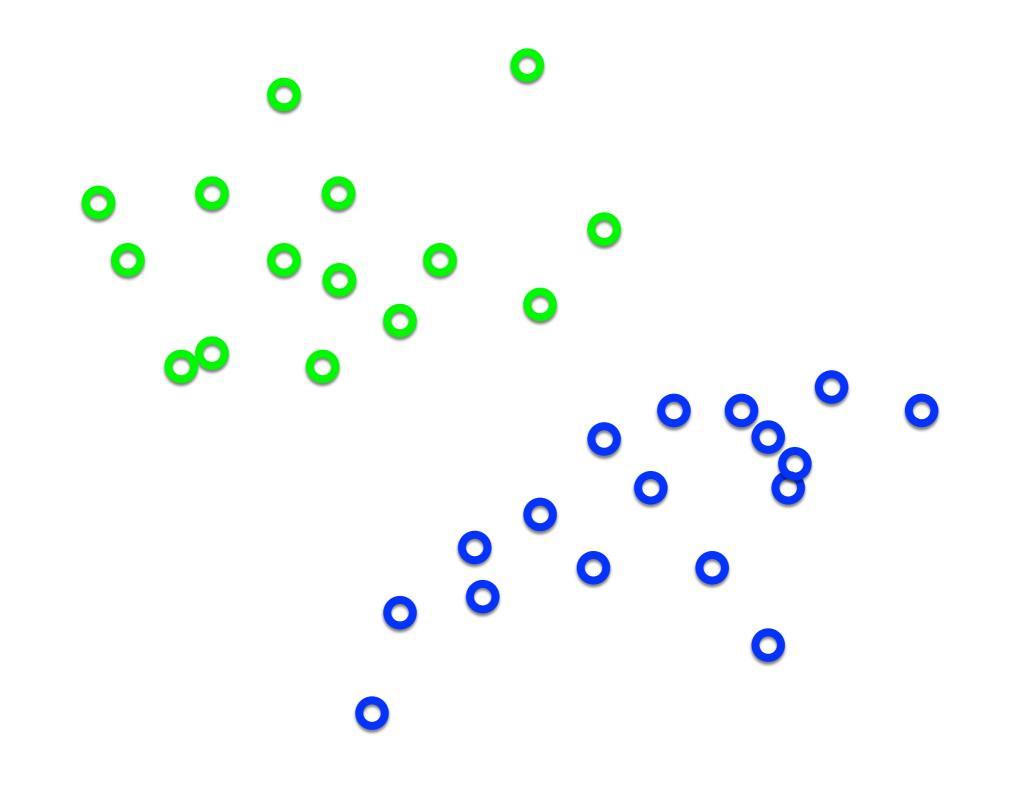
Now we can go to 3D ...

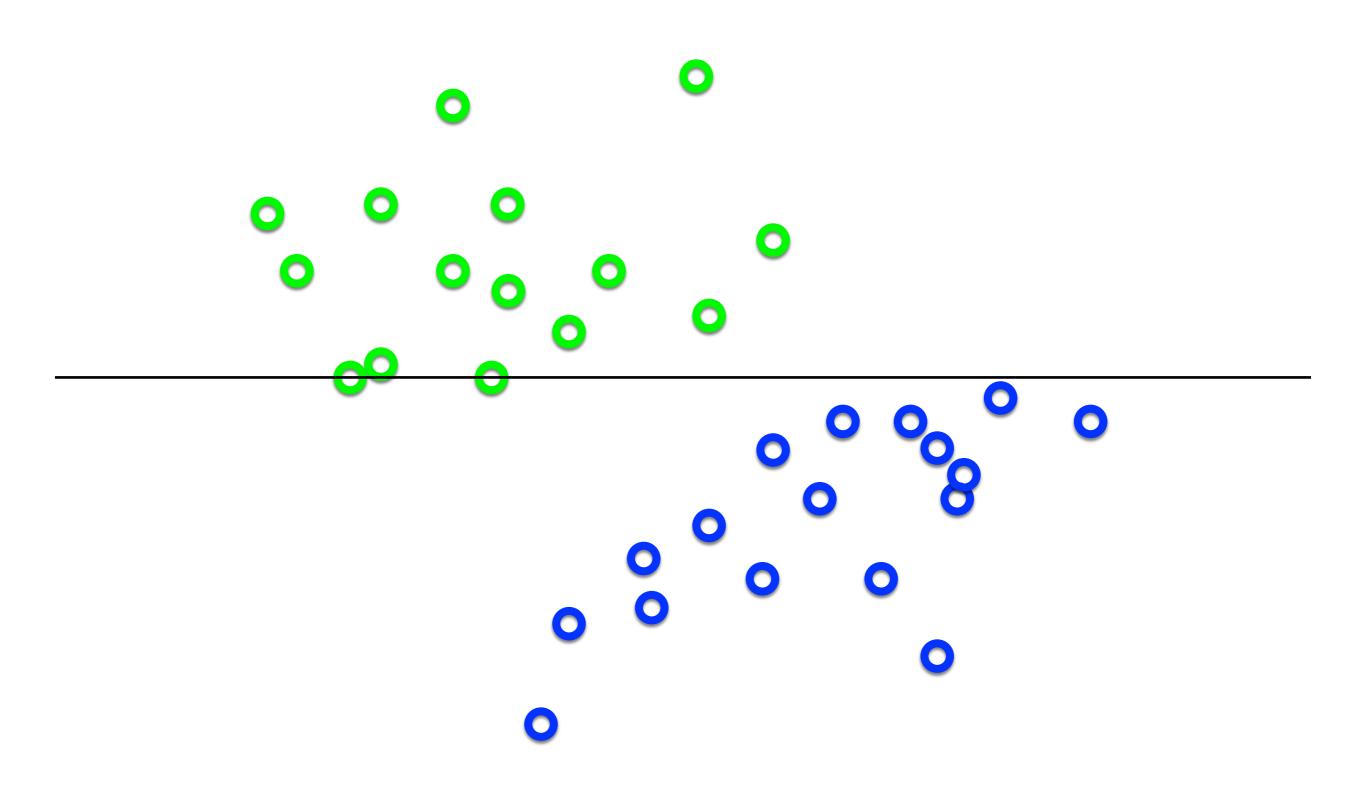


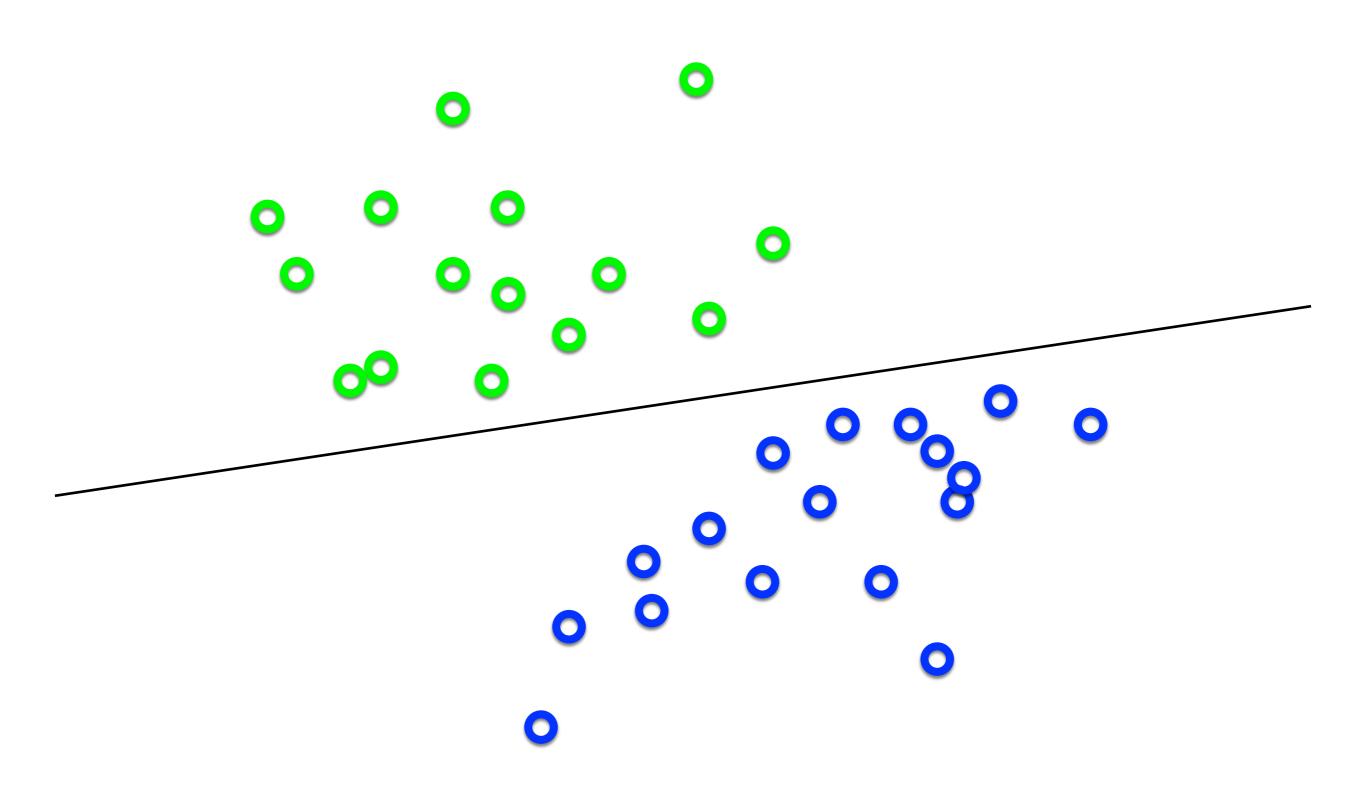


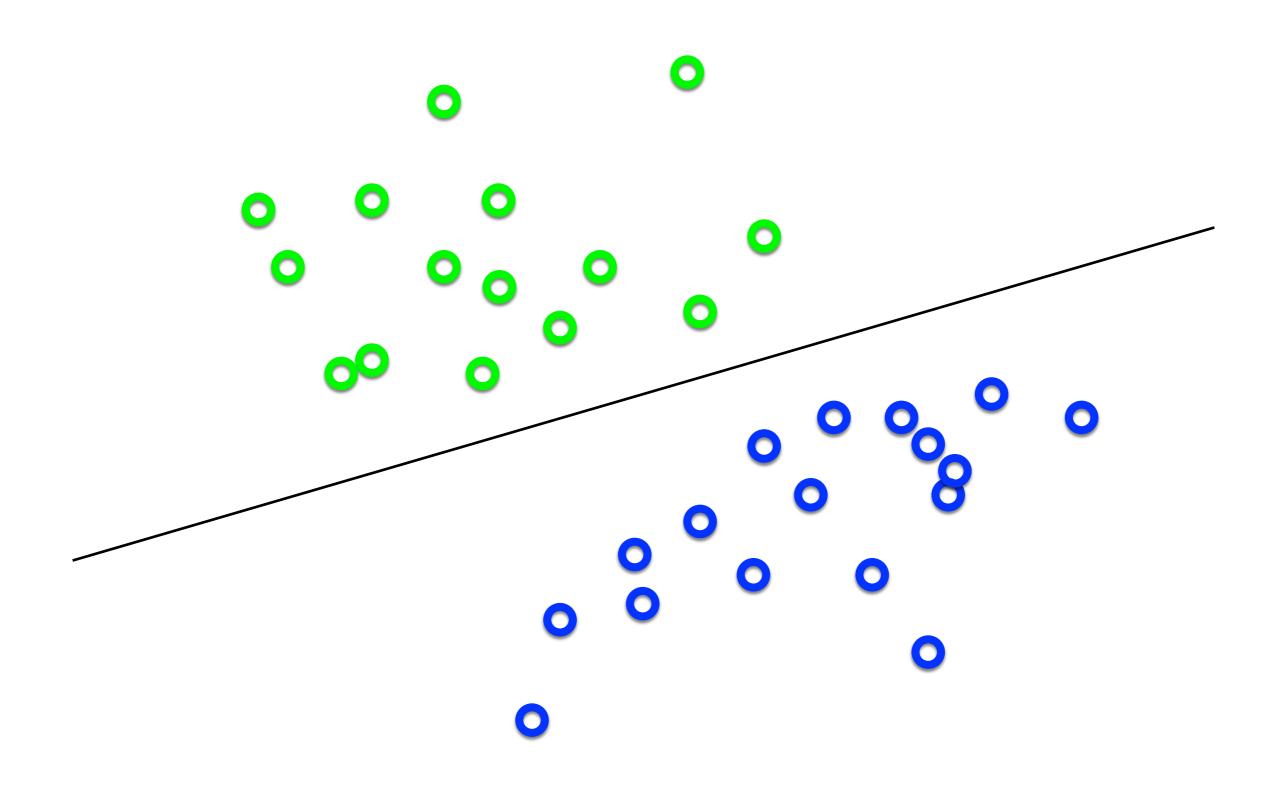


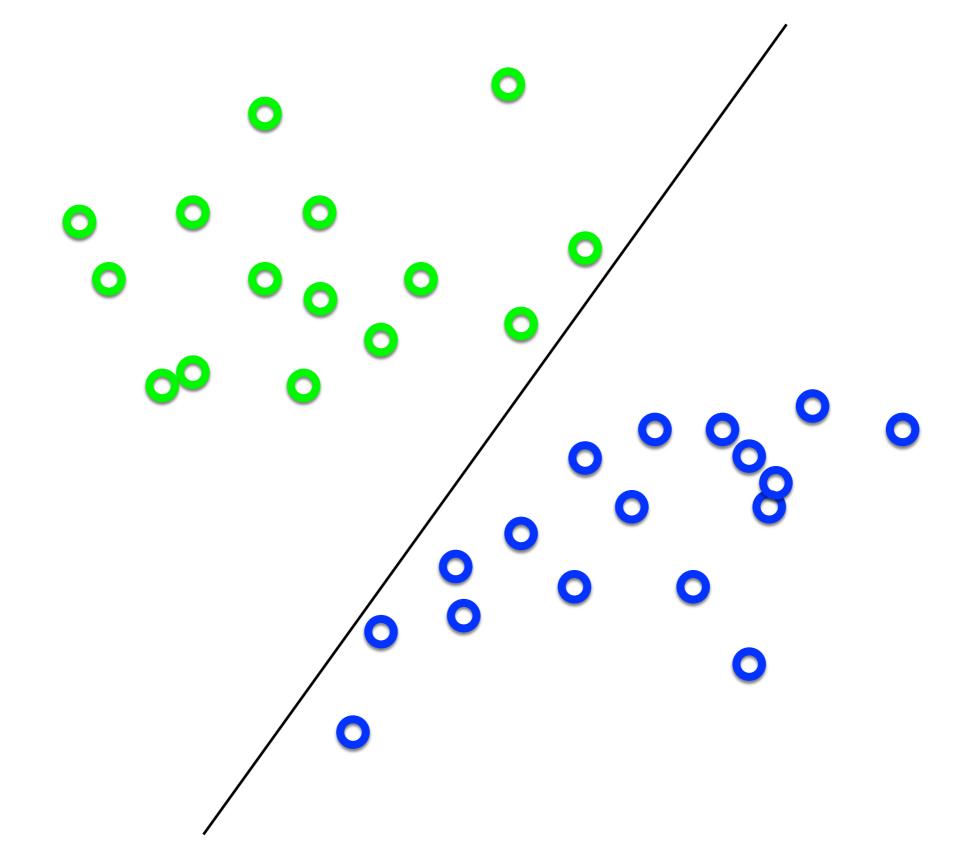


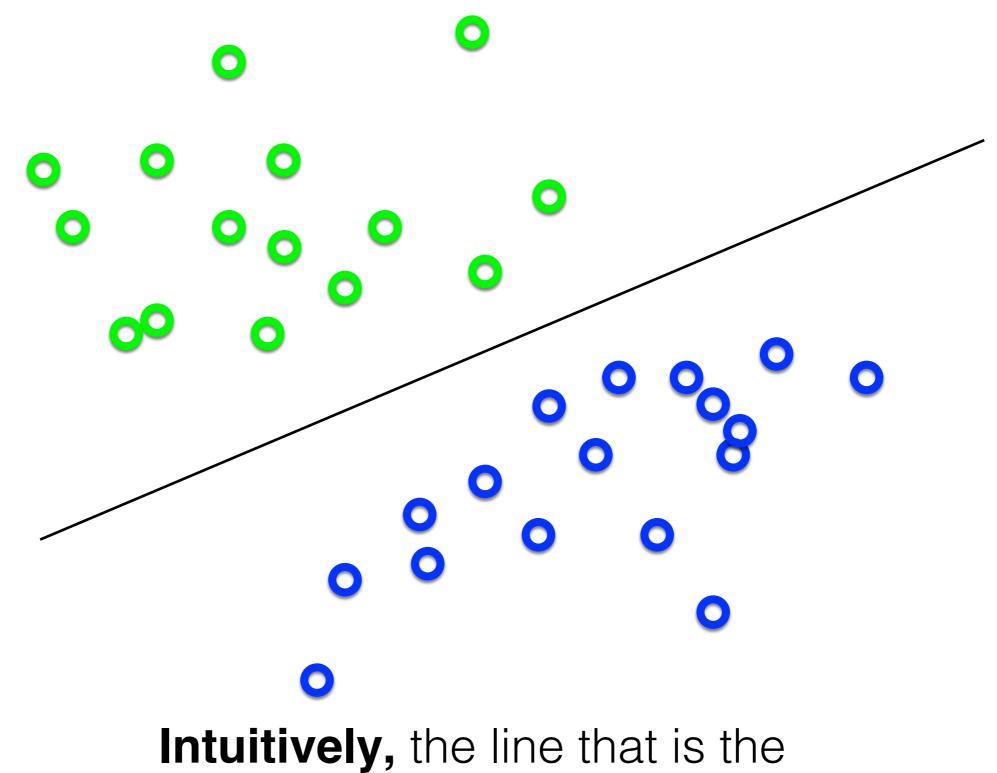




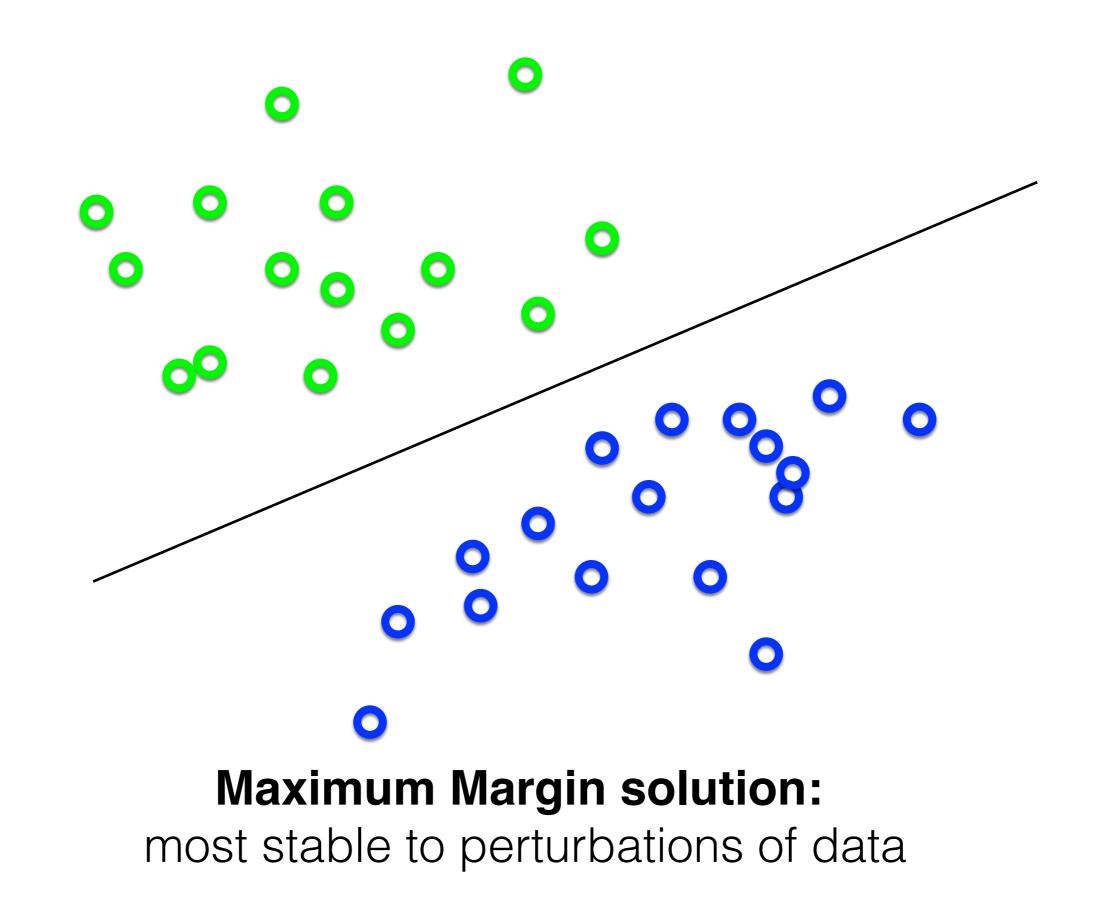


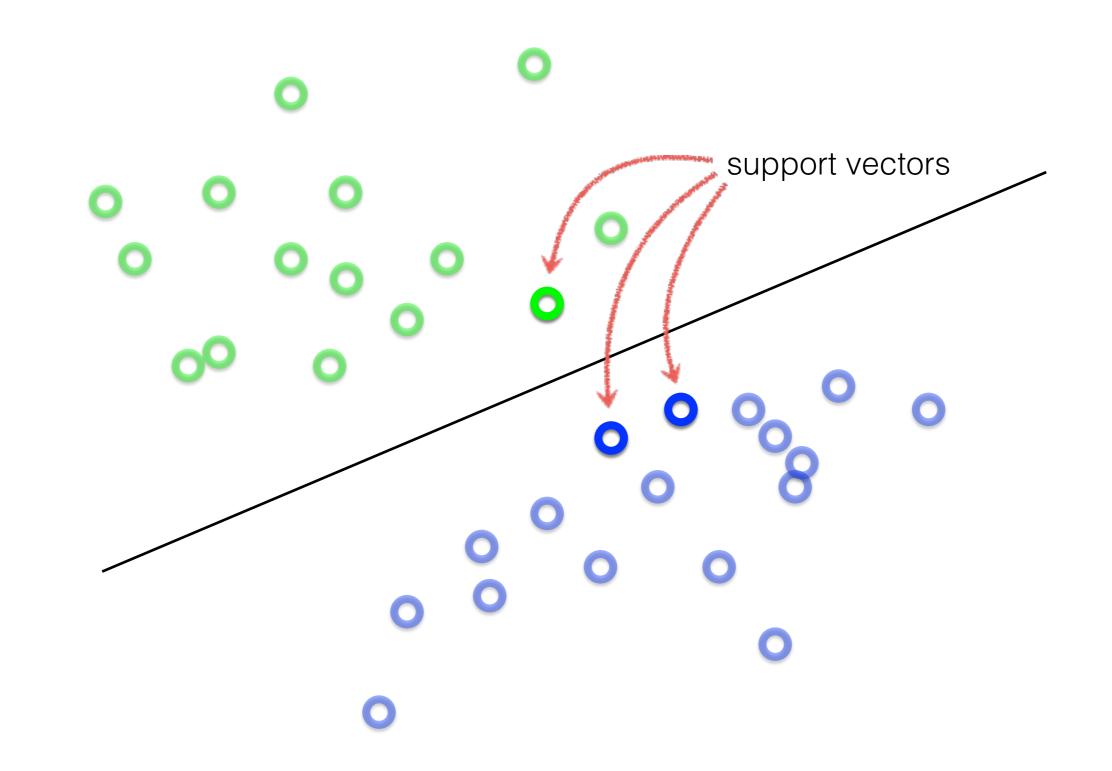






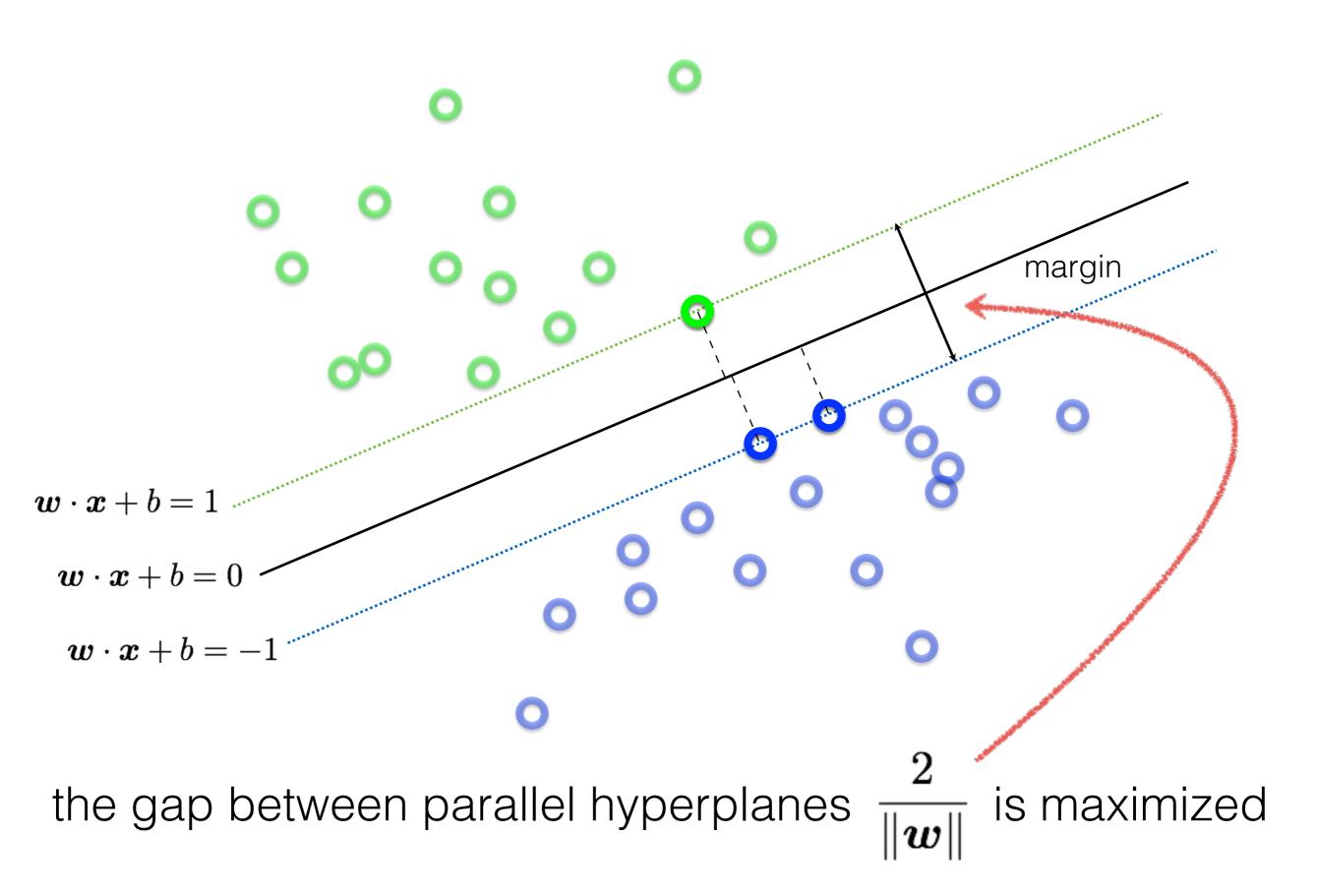
farthest from all interior points





Want a hyperplane that is far away from 'inner points'

Find hyperplane **w** such that ...



Can be formulated as a maximization problem

$$\max_{\boldsymbol{w}} \frac{2}{\|\boldsymbol{w}\|}$$

subject to $\boldsymbol{w} \cdot \boldsymbol{x}_i + b \geq +1$ if $y_i = +1$ for $i = 1, \dots, N$

What does this constraint mean?

label of the data point

Why is it +1 and -1?

Can be formulated as a maximization problem

$$\begin{aligned} \max_{\boldsymbol{w}} \frac{2}{\|\boldsymbol{w}\|} \\ \text{subject to } \boldsymbol{w} \cdot \boldsymbol{x}_i + b & \geq +1 \quad \text{if } y_i = +1 \\ \leq -1 \quad \text{if } y_i = -1 \quad \text{for } i = 1, \dots, N \end{aligned}$$

Equivalently,

Where did the 2 go?

 $\min_{oldsymbol{w}} \|oldsymbol{w}\|$

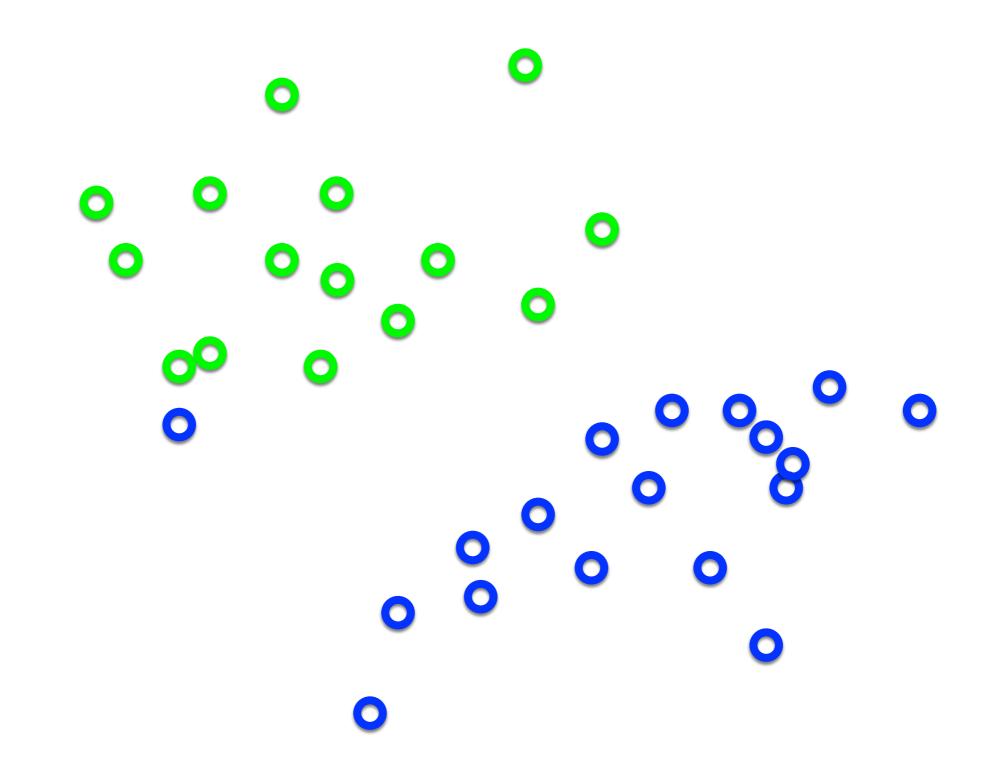
subject to $y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \geq 1$ for $i = 1, \dots, N$

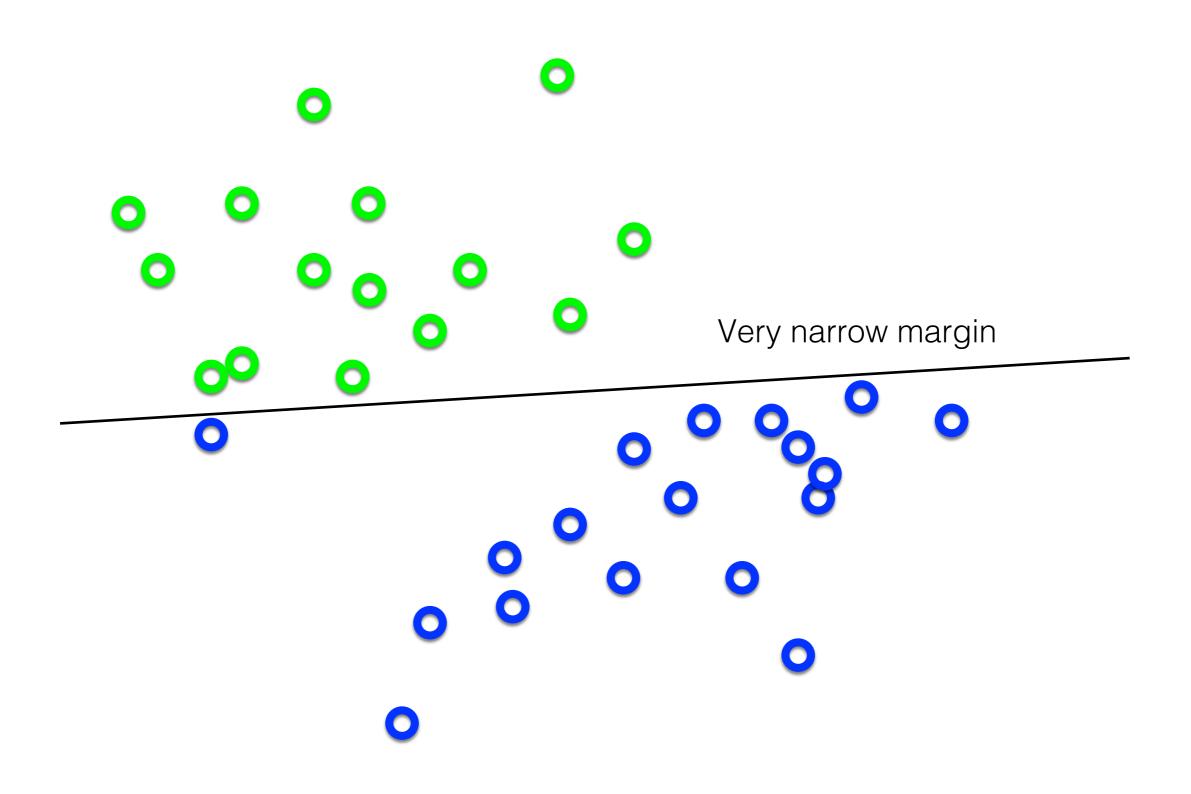
What happened to the labels?

'Primal formulation' of a linear SVM

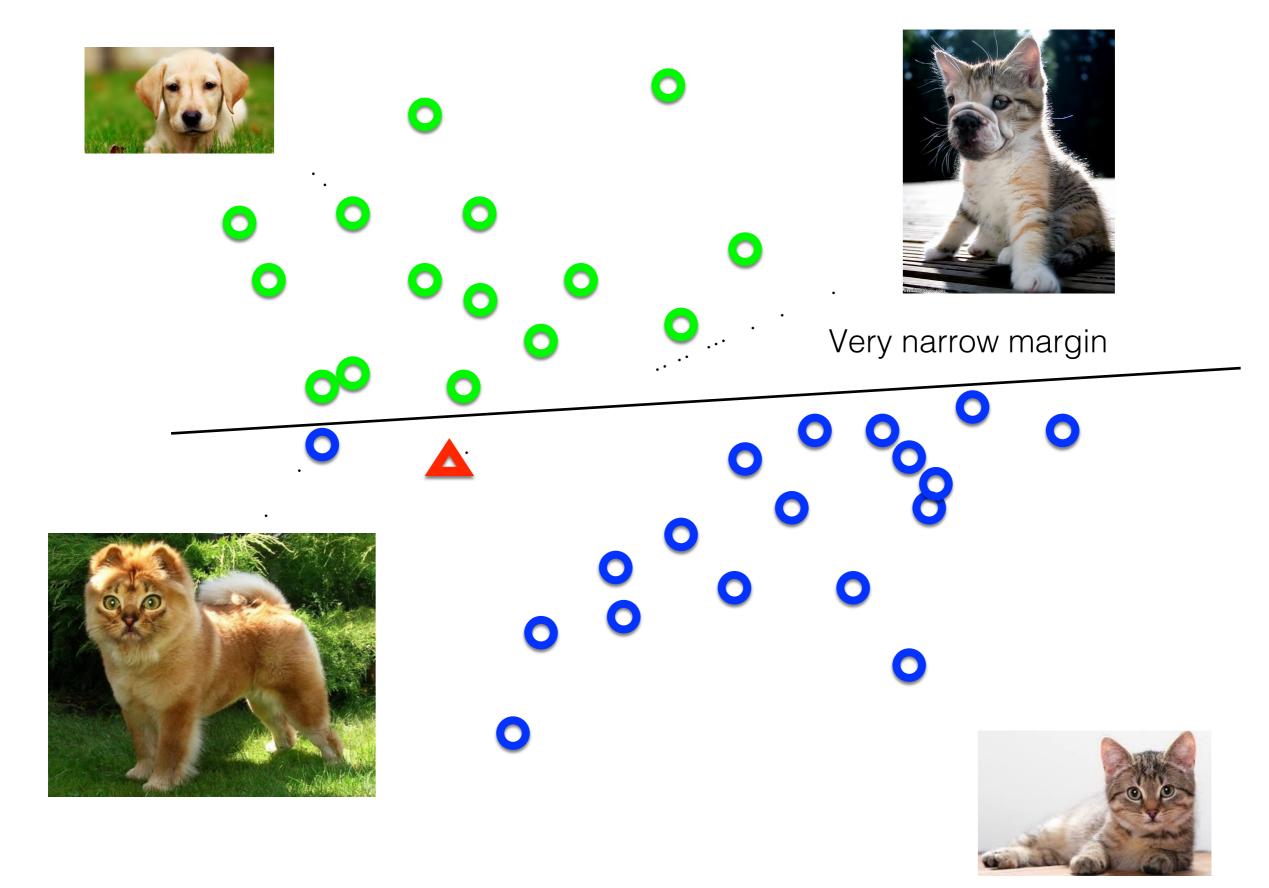
subject to
$$y_i(\boldsymbol{w}\cdot\boldsymbol{x}_i+b)\geq 1$$
 for $i=1,\ldots,N$
Constraints

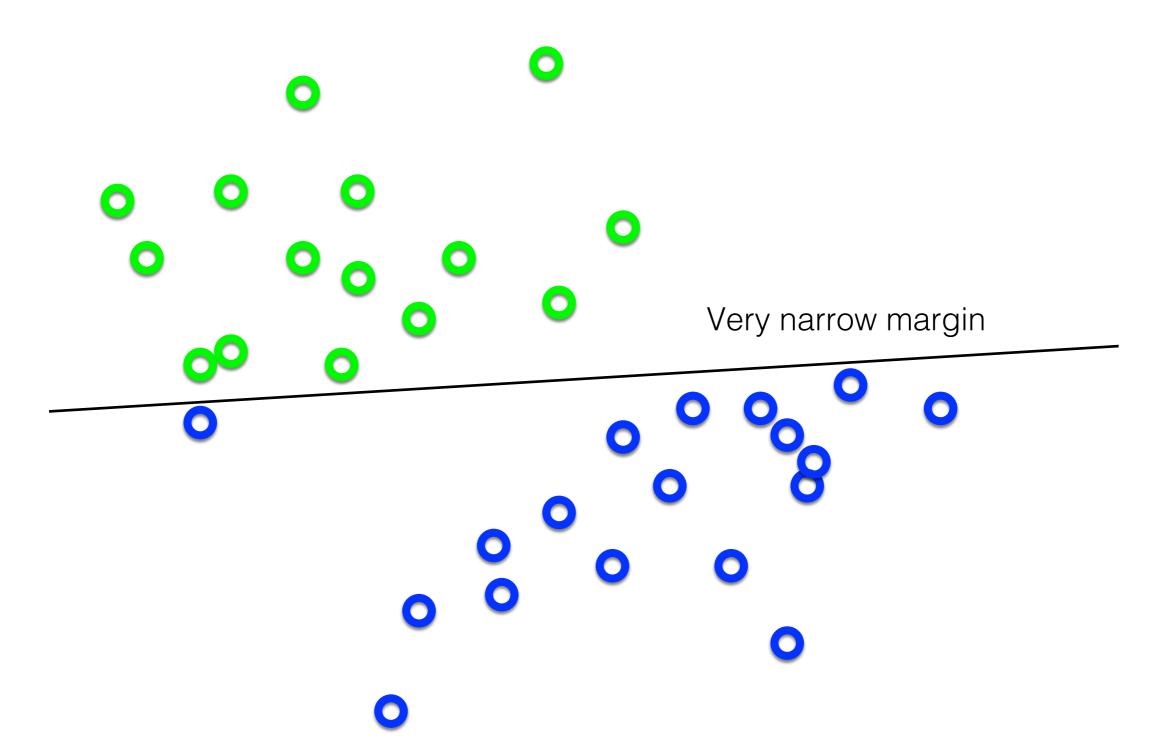
This is a convex quadratic programming (QP) problem (a unique solution exists)



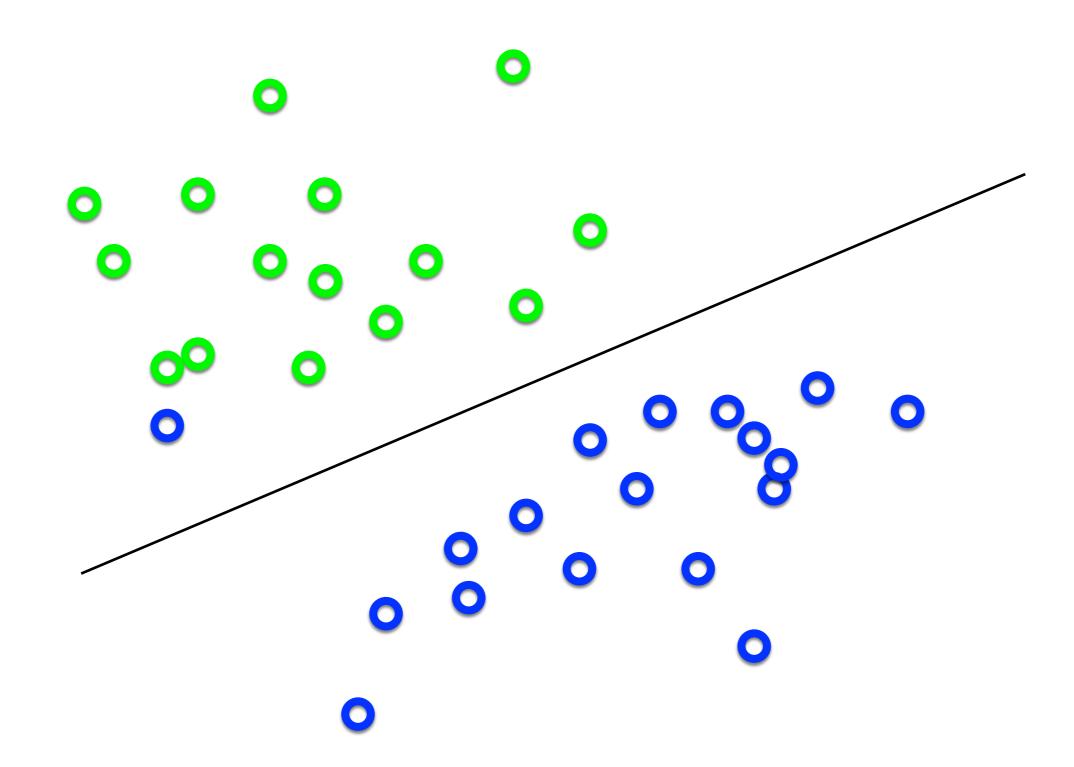


Separating cats and dogs

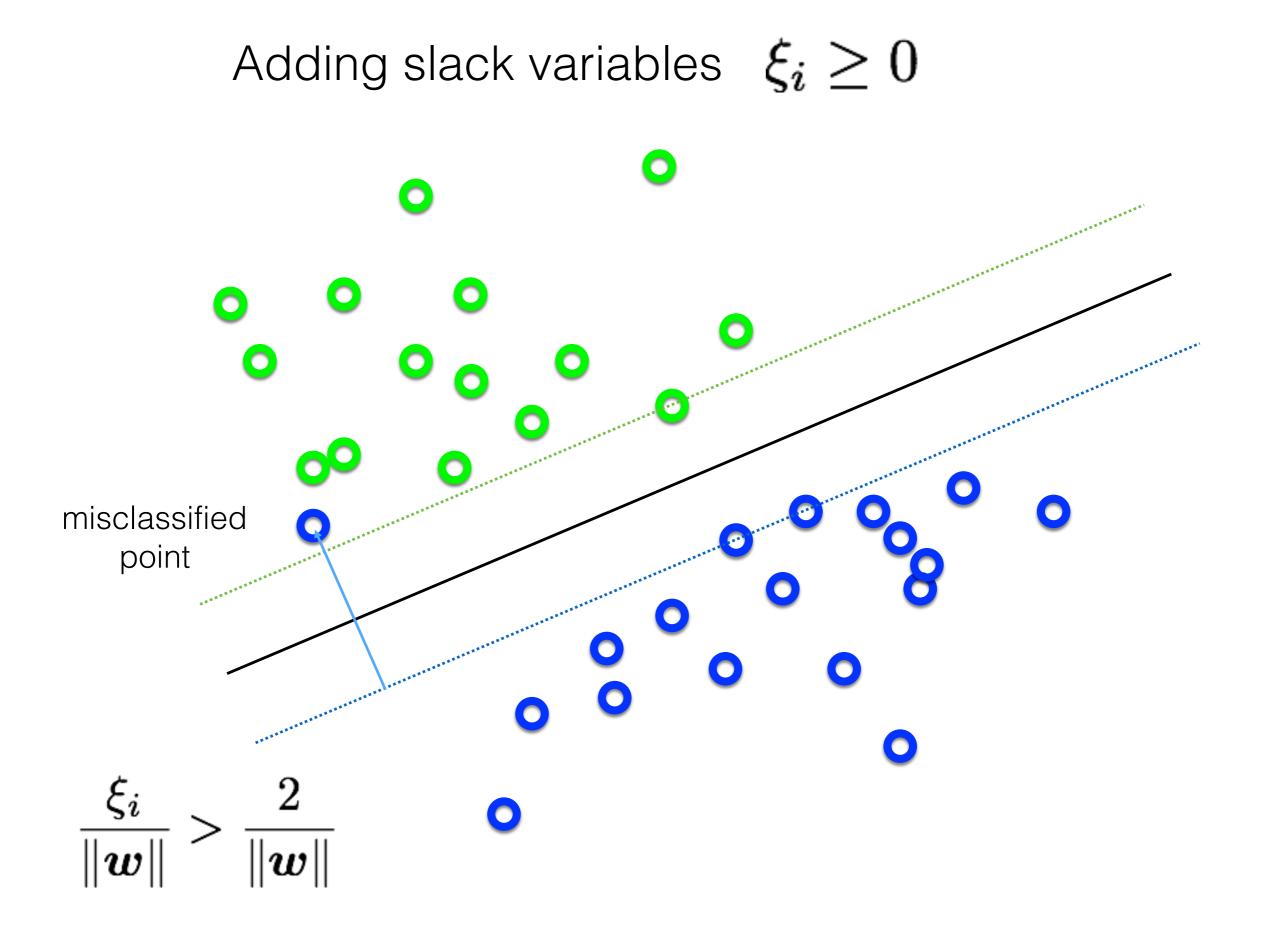


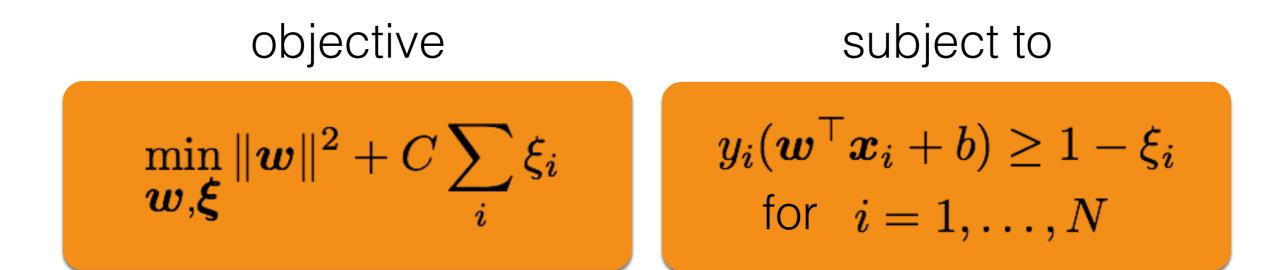


Intuitively, we should allow for some misclassification if we can get more robust classification

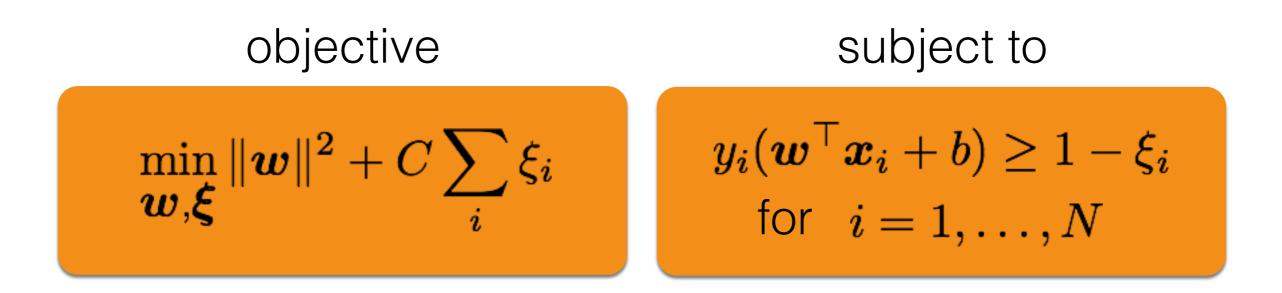


Trade-off between the MARGIN and the MISTAKES (might be a better solution)



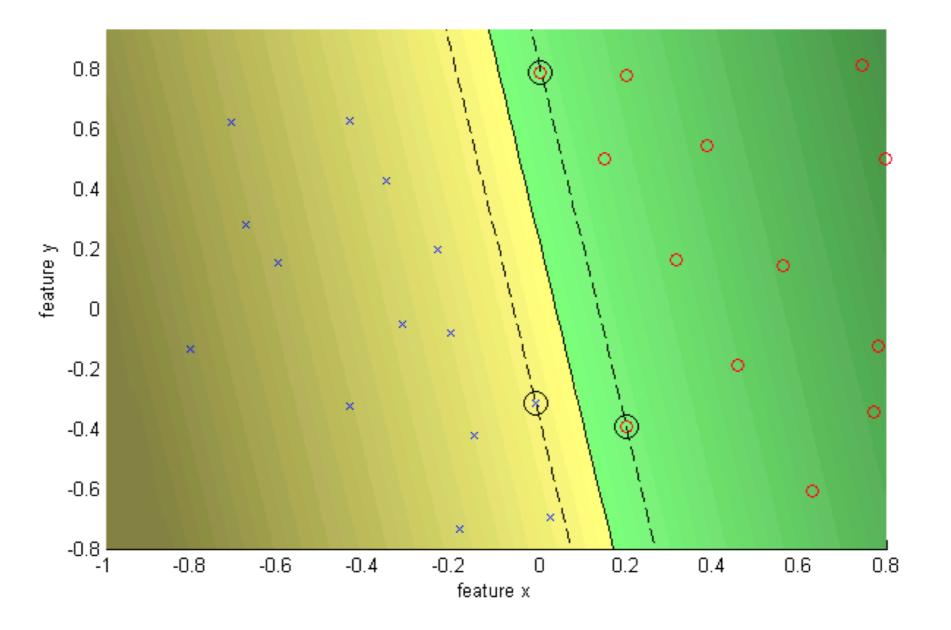


objective	subject to
$\min_{\boldsymbol{w},\boldsymbol{\xi}} \ \boldsymbol{w}\ ^2 + C \sum_i \xi_i$	$y_i(oldsymbol{w}^{ op}oldsymbol{x}_i+b) \geq 1-\xi_i$ for $i=1,\ldots,N$
	allows for mistakes, e margin is minimized.



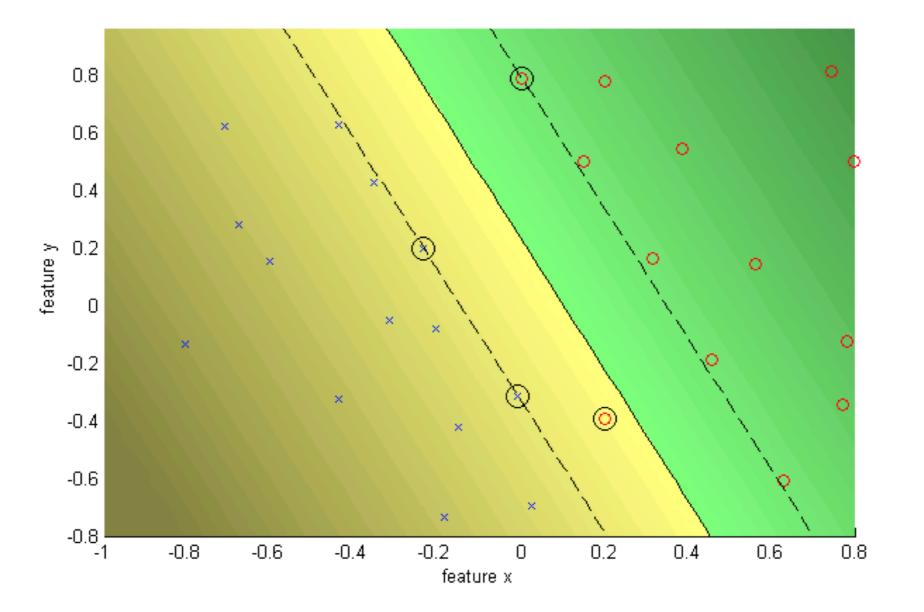
- Every constraint can be satisfied if slack is large
- C is a regularization parameter
 - Small C: ignore constraints (larger margin)
 - Big C: constraints (small margin)
- Still QP problem (unique solution)

C = Infinity hard margin



Comment Window	
SVM (L1) by Sequential Minimal Optimizer	^
Kernel: linear (-), C: Inf	
Kernel evaluations: 971	
Number of Support Vectors: 3	
Margin: 0.0966	
Training error: 0.00%	~

C = 10 soft margin



Comment Window	
SVM (L1) by Sequential Minimal Optimizer	^
Kernel: linear (-), C: 10.0000	_
Kernel evaluations: 2645	
Number of Support Vectors: 4	
Margin: 0.2265	
Training error: 3.70%	~