Alignment and tracking

Overview of today's lecture

- Motion magnification using optical flow.
- Image alignment.
- Lucas-Kanade alignment.
- Baker-Matthews alignment.
- Inverse alignment.
- KLT tracking.
- Mean-shift tracking.
- Modern trackers.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).

Motion magnification using optical flow

How would you achieve this effect?

original

motion-magnified

- Compute optical flow from frame to frame.
- Magnify optical flow velocities.
- Appropriately warp image intensities.

How would you achieve this effect?

naïvely motion-magnified

motion-magnified

- Compute optical flow from frame to frame.
- Magnify optical flow velocities.
- Appropriately warp image intensities.

In practice, many additional steps are required for a good result.

Some more examples

Some more examples

Image alignment

How can I find

in the image?

Idea \#1: Template Matching

Slow, combinatory, global solution

Idea \#2: Pyramid Template Matching

Faster, combinatory, locally optimal

Idea \#3: Model refinement

(when you have a good initial solution)

Fastest, locally optimal

Some notation before we get into the math...

2D image transformation
$\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})$

2D image coordinate

$$
\boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Parameters of the transformation

$$
\boldsymbol{p}=\left\{p_{1}, \ldots, p_{N}\right\}
$$

Warped image
$I\left(\boldsymbol{x}^{\prime}\right)=I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
Pixel value at a coordinate

Affine

Some notation before we get into the math...

2D image transformation

$$
\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})
$$

2D image coordinate

$$
\boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Parameters of the transformation

$$
\boldsymbol{p}=\left\{p_{1}, \ldots, p_{N}\right\}
$$

Warped image
$I\left(\boldsymbol{x}^{\prime}\right)=I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
Pixel value at a coordinate

Translation

$$
\begin{aligned}
\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) & =\left[\begin{array}{c}
x+p_{1} \\
y+p_{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & p_{1} \\
0 & 1 & p_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Affine

Some notation before we get into the math...

2D image transformation

$$
\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})
$$

2D image coordinate

$$
\boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Parameters of the transformation

$$
\boldsymbol{p}=\left\{p_{1}, \ldots, p_{N}\right\}
$$

Warped image
$I\left(\boldsymbol{x}^{\prime}\right)=I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
Pixel value at a coordinate

Translation

$$
\begin{aligned}
\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) & =\left[\begin{array}{c}
x+p_{1} \\
y+p_{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & p_{1} \\
0 & 1 & p_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Affine

$$
\begin{aligned}
& \mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})=\left[\begin{array}{l}
p_{1} x+p_{2} y+p_{3} \\
p_{4} x+p_{5} y+p_{6}
\end{array}\right]
\end{aligned}
$$

can be written in matrix form when linear affine warp matrix can also be 3×3 when last row is [lllll 001$]$
$\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \quad$ takes a ___ as input and returns a \qquad
$\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \quad$ returns a \qquad
\qquad
$\boldsymbol{p}=\left\{p_{1}, \ldots, p_{N}\right\} \quad$ where N is ___ for an affine model
$I\left(\boldsymbol{x}^{\prime}\right)=I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})) \quad$ this warp changes pixel values?

Image alignment (problem definition)

Find the warp parameters \mathbf{p} such that the SSD is minimized

Find the warp parameters \mathbf{p} such that the SSD is minimized

$\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})$

Image alignment (problem definition)

Find the warp parameters \mathbf{p} such that the SSD is minimized

How could you find a solution to this problem?

This is a non-linear (quadratic) function of a non-parametric function!
(Function \boldsymbol{I} is non-parametric)

$\min _{\boldsymbol{p}} \sum[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}$

Hard to optimize

What can you do to make it easier to solve?

This is a non-linear (quadratic) function of a non-parametric function!
(Function \boldsymbol{I} is non-parametric)

$\min _{\boldsymbol{p}} \sum[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}$

Hard to optimize

What can you do to make it easier to solve?
assume good initialization, linearized objective and update incrementally

Lucas-Kanade alignment

(pretty strong assumption)
If you have a good initial guess p...

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

can be written as ...

This is still a non-linear (quadratic) function of a non-parametric function!
(Function \boldsymbol{I} is non-parametric)

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

How can we linearize the function I for a really small perturbation of \boldsymbol{p} ?

This is still a non-linear (quadratic) function of a non-parametric function!
(Function \boldsymbol{I} is non-parametric)

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

How can we linearize the function I for a really small perturbation of \boldsymbol{p} ?

Taylor series approximation!

$\sum[I(\mathbf{W}(x ; \boldsymbol{p}+\Delta p))-T(x)]^{2}$ \boldsymbol{x}

Multivariable Taylor Series Expansion

(First order approximation)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Multivariable Taylor Series Expansion

(First order approximation)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

$$
\text { Recall: } \quad \boldsymbol{x}^{\prime}=\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})
$$

$I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p})) \approx I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\frac{\partial I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}$

$$
\begin{array}{ll}
& =I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\frac{\partial I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))}{\partial \boldsymbol{x}^{\prime}} \frac{\partial \mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} \\
& =I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} \\
\text { chair rule } \\
\text { shorthand }
\end{array}
$$

$\sum[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}$
 \boldsymbol{x}

Multivariable Taylor Series Expansion

(First order approximation)

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Linear approximation
$\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}$
What are the unknowns here?

$\sum[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}$
 \boldsymbol{x}

Multivariable Taylor Series Expansion

 (First order approximation)$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Linear approximation

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
$$

\boldsymbol{X} is a \qquad of dimension \qquad X \qquad
output of $\mathbf{~ i s ~ a ~}$ \qquad of dimension \qquad X \qquad \boldsymbol{P} is a ___ of dimension___
$I(\cdot)$ is a function of \qquad variables

The Jacobian $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$

$$
\begin{aligned}
\boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\mathbf{W}=\left[\begin{array}{l}
W_{x}(x, y) \\
W_{y}(x, y)
\end{array}\right] \\
\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}=\left[\begin{array}{llll}
\frac{\partial W_{x}}{\partial p_{1}} & \frac{\partial W_{x}}{\partial p_{2}} & \cdots & \frac{\partial W_{x}}{\partial p_{N}} \\
\frac{\partial W_{y}}{\partial p_{1}} & \frac{\partial W_{y}}{\partial p_{2}} & \cdots & \frac{\partial W_{y}}{\partial p_{N}}
\end{array}\right]
\end{aligned}\left\{\begin{array}{l}
\text { Affine transform } \\
\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})=[\\
\underline{\text { Rate of change of the warp }}
\end{array} \quad \begin{array}{l}
\frac{\partial W_{x}}{\partial p_{1}}=x \\
\frac{\partial W_{y}}{\partial p_{1}}=0 \\
\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}=\left[\begin{array}{l}
x \\
0
\end{array}\right.
\end{array}\right.
$$

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
$$

$\partial \mathbf{W}$
$\frac{}{\partial \boldsymbol{p}}$ is a
of dimension
_ ${ }^{\mathrm{x}}$ —_
Δp is a \qquad of dimension \qquad x \qquad
$\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}$

pixel coordinate
(2×1)

Summary

(of Lucas-Kanade Image Alignment)

Problem:

Strategy:

$$
\begin{aligned}
& \sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2} \\
& \text { Assume known approximate solution } \\
& \text { Solve for increment } \\
& \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
\end{aligned}
$$

OK, so how do we solve this?

$$
\min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
$$

Another way to look at it...

$$
\begin{aligned}
& \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2} \\
& \min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\text { (moving terms around) }} \Delta \boldsymbol{p} \boldsymbol{p}-\{T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))\}\right]^{2} \\
& \substack{\text { vector of } \\
\text { consants }} \\
& \text { vector of } \\
& \text { variabes }
\end{aligned}
$$

Have you seen this form of optimization problem before?

Another way to look at it...

$$
\min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
$$

How do you solve this?

Least squares approximation

$$
\hat{x}=\underset{x}{\arg \min }\|A x-b\|^{2} \quad \text { is solved by } \quad x=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

Applied to our tasks:

$$
\min _{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-\{T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))\}\right]^{2}
$$

is optimized when

$$
\begin{aligned}
& \Delta \boldsymbol{p}=H^{-1} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))] \begin{array}{c}
\substack{\text { fter applying } \\
x=\left(A^{\top} A\right)^{-1} A^{\top} b} \\
\text { where } H=\sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]
\end{array} \underbrace{}_{A^{\top} A}
\end{aligned}
$$

Solve:

$$
\min _{\boldsymbol{p}} \sum_{\boldsymbol{x}}\left[\underset{\substack{\text { waped imase }}}{ }[(\mathbf{W}(\boldsymbol{x}))-T(\boldsymbol{x})]^{2}\right. \text { tempate mase }
$$

Strategy:

$$
\begin{aligned}
& \sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2} \\
& \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\Delta \boldsymbol{p} & =H^{-1} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))] \\
H & =\sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]
\end{aligned}
$$

Solution to least squares approximation

This is called...

Gauss-Newton gradient descent non-linear optimization!

Lucas Kanade (Additive alignment)

1. Warp image
$I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
2. Compute error image $[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]$
3. Compute gradient
$\nabla I\left(\boldsymbol{x}^{\prime}\right)$
4. Evaluate Jacobian $\quad \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$
5. Compute Hessian
H $H=\sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]$
6. Compute
$\Delta \boldsymbol{p} \quad \Delta \boldsymbol{p}=H^{-1} \sum_{\boldsymbol{x}}\left[\nabla \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(x)-I(\mathbf{W}(x ; p))]$
7. Update parameters
$\boldsymbol{p} \leftarrow \boldsymbol{p}+\Delta \boldsymbol{p}$

Just 8 lines of code!

Baker-Matthews alignment

Image Alignment

(start with an initial solution, match the image and template)

Image Alignment Objective Function

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

Given an initial solution...several possible formulations

Additive Alignment

$\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}$
incremental perturbation of parameters

Image Alignment Objective Function

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

Given an initial solution...several possible formulations

Additive Alignment

$\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}$
incremental perturbation of parameters

Compositional Alignment

$\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p})-T(\boldsymbol{x})]^{2}\right.$
incremental warps of image

Additive strategy

Compositional strategy

Additive

Compositional

Compositional
$T(\mathrm{x})$

Compositional Alignment

Original objective function (SSD)

$$
\min _{\boldsymbol{p}} \sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

Assuming an initial solution \mathbf{p} and a compositional warp increment

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p})-T(\boldsymbol{x})]^{2}\right.
$$

Compositional Alignment

Original objective function (SSD)

$$
\min _{\boldsymbol{p}} \sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

Assuming an initial solution \mathbf{p} and a compositional warp increment

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p})-T(\boldsymbol{x})]^{2}\right.
$$

Another way to write the composition
$\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) \equiv \mathbf{W}(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p})$

Identity warp
$\mathbf{W}(\boldsymbol{x} ; \mathbf{0})$

Compositional Alignment

Original objective function (SSD)

$$
\min _{\boldsymbol{p}} \sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

Assuming an initial solution \mathbf{p} and a compositional warp increment

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p})-T(\boldsymbol{x})]^{2}\right.
$$

Another way to write the composition
$\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) \equiv \mathbf{W}(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p})$

Identity warp
$\mathbf{W}(\boldsymbol{x} ; \mathbf{0})$

Skipping over the derivation...the new update rule is

$$
\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p})
$$

So what's so great about this compositional form?

Additive Alignment

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

linearized form

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I\left(\boldsymbol{x}^{\prime}\right) \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2} \quad \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I\left(\boldsymbol{x}^{\prime}\right) \frac{\partial \mathbf{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
$$

Additive Alignment

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

linearized form
$\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I\left(\boldsymbol{x}^{\prime}\right) \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2} \quad \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I\left(\boldsymbol{x}^{\prime}\right) \frac{\partial \mathbf{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}$

The Jacobian is constant. Jacobian can be precomputed!

Compositional Image Alignment

Minimize

$$
\sum_{\mathbf{x}}[I(\mathbf{W}(\mathbf{W}(\mathbf{x} ; \Delta \mathbf{p}) ; \mathbf{p}))-T(\mathbf{x})]^{2} \approx \sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\boldsymbol{\nabla} I(\mathbf{W}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2}
$$

Jacobian is simple and can be precomputed

Lucas Kanade (Additive alignment)

1. Warp image $I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
2. Compute error image $[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]^{2}$
3. Compute gradient $\quad \nabla I\left(\boldsymbol{x}^{\prime}\right)$
4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$
5. Compute Hessian H
6. Compute $\Delta \boldsymbol{p}$
7. Update parameters
$\boldsymbol{p} \leftarrow \boldsymbol{p}+\Delta \boldsymbol{p}$

Shum-Szeliski (Compositional alignment)

1. Warp image $I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
2. Compute error image $[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]^{2}$
3. Compute gradient $\nabla I\left(\boldsymbol{x}^{\prime}\right)$
4. Evaluate Jacobian $\frac{\partial \mathrm{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}}$
5. Compute Hessian H
6. Compute $\Delta \boldsymbol{p}$
7. Update parameters $\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p})$

Any other speed up techniques?

Inverse alignment

Why not compute warp updates on the template?

$$
\begin{array}{cc}
\text { Additive Alignment } & \text { Compositional Alignment } \\
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{3} & \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p})-T(\boldsymbol{x})]^{2}\right.
\end{array}
$$

Why not compute warp updates on the template?

$$
\begin{array}{cc}
\text { Additive Alignment } & \text { Compositional Alignment } \\
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2} & \sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}) ; \boldsymbol{p})-T(\boldsymbol{x})]^{2}\right)
\end{array}
$$

What happens if you let the template be warped too?

$$
\sum_{\boldsymbol{x}} \quad[T(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}))-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]^{2}
$$

Inverse compositional
$W(x ; p) \circ W(x ; \Delta p)^{-1}$

Compositional strategy

Inverse Compositional strategy

So what's so great about this inverse compositional form?

Inverse Compositional Alignment

Minimize

$$
\sum_{\boldsymbol{x}}[T(\mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p}))-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]^{2} \approx \sum\left[T(\mathbf{W}(\boldsymbol{x} ; \mathbf{0}))+\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))\right]^{2}
$$

Solution

$$
\begin{aligned}
H & =\sum_{\boldsymbol{x}}\left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right] \\
\Delta \boldsymbol{p} & =\sum_{\boldsymbol{x}} H^{-1}\left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]
\end{aligned}
$$

Update

$$
\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p})^{-1}
$$

Properties of inverse compositional alignment

Jacobian can be precomputed
It is constant - evaluated at $\mathrm{W}(\mathrm{x} ; \mathrm{0})$
Gradient of template can be precomputed
It is constant
Hessian can be precomputed

$$
\begin{aligned}
& H=\sum_{\boldsymbol{x}}\left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]
\end{aligned}
$$

Warp must be invertible

Lucas Kanade (Additive alignment)

1. Warp image $I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
2. Compute error image $[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]^{2}$
3. Compute gradient $\nabla I(\mathbf{W})$
4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$
5. Compute Hessian H
6. Compute $\Delta \boldsymbol{p}$
7. Update parameters
$\boldsymbol{p} \leftarrow \boldsymbol{p}+\Delta \boldsymbol{p}$

Shum-Szeliski (Compositional alignment)

1. Warp image $I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
2. Compute error image $[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]$
3. Compute gradient $\nabla I\left(\boldsymbol{x}^{\prime}\right)$
4. Evaluate Jacobian $\frac{\partial \mathrm{W}(\boldsymbol{x} ; \mathbf{0})}{\partial \boldsymbol{p}}$
5. Compute Hessian H
6. Compute $\Delta \boldsymbol{p}$
7. Update parameters $\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p})$

Baker-Matthews (Inverse Compositional alignment)

1. Warp image $I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))$
2. Compute error image $[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]$
3. Compute gradient $\nabla T(\mathbf{W})$
4. Evaluate Jacobian $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$
5. Compute Hessian
H
$H=\sum_{\boldsymbol{x}}\left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla T \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]$
6. Compute $\Delta \boldsymbol{p} \quad \Delta p=\sum_{x} H^{-1}\left[\nabla \tau \frac{\partial \mathbf{W}}{\partial p}\right]^{\top}[(T(x)-I(\mathbb{W}(x ; p))]$
7. Update parameters $\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \leftarrow \mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}) \circ \mathbf{W}(\boldsymbol{x} ; \Delta \boldsymbol{p})^{-1}$

Algorithm	Efficient	Authors
Forwards Additive	No	Lucas, Kanade
Forwards compositional	No	Shum, Szeliski
Inverse Additive	Yes	Hager, Belhumeur
Inverse Compositional	Yes	Baker, Matthews

Kanade-Lucas-Tomasi (KLT)

 tracker

Feature-based tracking

Up to now, we've been aligning entire images but we can also track just small image regions too!
(sometimes called sparse tracking or sparse alignment)

How should we select the 'small images' (features)?

How should we track them from frame to frame?

History of the

Kanade-Lucas-Tomasi (KLT) Tracker

An Iterative Image Registration Technique with an Application to Stereo Vision.

1981

Good Features to Track.
1994

Kanade-Lucas-Tomasi

How should we track them from frame to frame?

Lucas-Kanade

Method for aligning (tracking) an image patch

How should we select features?
Tomasi-Kanade
Method for choosing the best feature (image patch)
for tracking

What are good features for tracking?

What are good features for tracking?

Intuitively, we want to avoid smooth regions and edges.
But is there a more is principled way to define good features?

What are good features for tracking?

Can be derived from the tracking algorithm

What are good features for tracking?

Can be derived from the tracking algorithm
'A feature is good if it can be tracked well'

Recall the Lucas-Kanade image alignment method:
error function (SSD)

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

incremental update

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

Recall the Lucas-Kanade image alignment method:
error function (SSD)

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

incremental update

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

linearize

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
$$

Recall the Lucas-Kanade image alignment method:
error function (SSD)

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

incremental update

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

linearize

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
$$

Gradient update $\quad \Delta \boldsymbol{p}=H^{-1} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]$

$$
H=\sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]
$$

Recall the Lucas-Kanade image alignment method:
error function (SSD)

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

incremental update

$$
\sum_{\boldsymbol{x}}[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}+\Delta \boldsymbol{p}))-T(\boldsymbol{x})]^{2}
$$

linearize

$$
\sum_{\boldsymbol{x}}\left[I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p}-T(\boldsymbol{x})\right]^{2}
$$

Gradient update $\quad \Delta \boldsymbol{p}=H^{-1} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]$

$$
H=\sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]
$$

Update

$$
\boldsymbol{p} \leftarrow \boldsymbol{p}+\Delta \boldsymbol{p}
$$

Stability of gradient decent iterations depends on ...

$$
\Delta \boldsymbol{p}=H^{-1} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]
$$

Stability of gradient decent iterations depends on ...

$$
\Delta \boldsymbol{p}=H^{-1} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]
$$

Inverting the Hessian

$$
H=\sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]
$$

When does the inversion fail?

Stability of gradient decent iterations depends on ...

$$
\Delta \boldsymbol{p}=H^{-1} \sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}[T(\boldsymbol{x})-I(\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p}))]
$$

Inverting the Hessian

$$
H=\sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]
$$

When does the inversion fail?
H is singular. But what does that mean?

Above the noise level

$$
\begin{aligned}
& \lambda_{1} \gg 0 \\
& \lambda_{2} \gg 0
\end{aligned}
$$

both Eigenvalues are large

Well-conditioned

both Eigenvalues have similar magnitude

Concrete example: Consider translation model

$$
\mathbf{W}(\boldsymbol{x} ; \boldsymbol{p})=\left[\begin{array}{c}
x+p_{1} \\
y+p_{2}
\end{array}\right] \quad \frac{\mathbf{W}}{\partial \boldsymbol{p}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Hessian

$$
\begin{aligned}
H & =\sum_{\boldsymbol{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}\right] \\
& =\sum_{\boldsymbol{x}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
I_{x} \\
I_{y}
\end{array}\right]\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
\sum_{\boldsymbol{x}} I_{x} I_{x} & \sum_{\boldsymbol{x}} I_{y} I_{x} \\
\sum_{\boldsymbol{x}} I_{x} I_{y} & \sum_{\boldsymbol{x}} I_{y} I_{y}
\end{array}\right] \leftarrow \text { when is this singular? }
\end{aligned}
$$

How are the eigenvalues related to image content?

interpreting eigenvalues

interpreting eigenvalues

interpreting eigenvalues

What are good features for tracking?

What are good features for tracking?

$\min \left(\lambda_{1}, \lambda_{2}\right)>\lambda$

'big Eigenvalues means good for tracking’

KLT algorithm

1. Find corners satisfying $\min \left(\lambda_{1}, \lambda_{2}\right)>\lambda$
2. For each corner compute displacement to next frame using the Lucas-Kanade method
3. Store displacement of each corner, update corner position
4. (optional) Add more corner points every M frames using 1
5. Repeat 2 to 3 (4)
6. Returns long trajectories for each corner point

Mean-shift algorithm

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Find the region of highest density

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Pick a point

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Draw a window

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)
Compute the
(weighted) mean

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Shift the window

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Compute the mean

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Shift the window

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Compute the mean

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Shift the window

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Compute the mean

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Shift the window

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Compute the mean

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Shift the window

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Compute the mean

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Shift the window

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Compute the mean

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Shift the window

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

Compute the mean

Mean Shift Algorithm
 A 'mode seeking' algorithm

Fukunaga \& Hostetler (1975)

To understand the theory behind this we need to understand...

Kernel density estimation

Kernel Density Estimation

A method to approximate an underlying PDF from samples

Put 'bump' on every sample to approximate the PDF

Say we have some hidden PDF...

Now to estimate the 'hidden' PDF place Gaussian bumps on the samples...

samples

samples

samples

Kernel Density Estimation

Approximate the underlying PDF from samples from it

Put 'bump' on every sample to approximate the PDF

Kernel Function

$K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$

returns the 'distance' between two points

Epanechnikov kernel

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)= \begin{cases}c\left(1-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right) & \left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Uniform kernel

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)= \begin{cases}c & \left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Normal kernel

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=c \exp \left(\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right)
$$

Radially symmetric kernels

...can be written in terms of its profile

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=c \cdot{ }_{\left(\sum_{\text {profile }}\right.}^{k\left(\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right)}
$$

Connecting KDE and the Mean Shift Algorithm

Mean-Shift Tracking

Given a set of points:

$$
\left\{\boldsymbol{x}_{s}\right\}_{s=1}^{S} \quad \boldsymbol{x}_{s} \in \mathcal{R}^{d}
$$

and a kernel: $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$

Find the mean sample point: \boldsymbol{x}

Mean-Shift Algorithm

$$
\begin{aligned}
& \text { Initialize } \boldsymbol{x} \quad \text { place we start } \\
& \text { While } v(\boldsymbol{x})>\epsilon \quad \text { shift values becomes really small } \\
& \qquad \begin{array}{r}
\text { 1. Compute mean-shift } \\
m(\boldsymbol{x})=\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right)} \quad \text { compute the 'mean' } \\
v(\boldsymbol{x})=m(\boldsymbol{x})-\boldsymbol{x} \\
\text { 2. Update } \boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{x}) \quad \text { compute the 'shift' }
\end{array} \quad \text { update the point }
\end{aligned}
$$

Mean-Shift Algorithm

Initialize \boldsymbol{x}
While $v(\boldsymbol{x})>\epsilon$
Where does this come from?

1. Compute mean-shift

$$
\begin{aligned}
m(\boldsymbol{x}) & =\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right)} \\
v(\boldsymbol{x}) & =m(\boldsymbol{x})-\boldsymbol{x}
\end{aligned}
$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{x})$

Where does this algorithm come from?

How is the KDE related to the mean shift algorithm?

Recall:

Kernel density estimate

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

We can show that:

Gradient of the PDF is related to the mean shift vector

$$
\nabla P(\boldsymbol{x}) \propto m(\boldsymbol{x})
$$

The mean shift vector is a 'step' in the direction of the gradient of the KDE mean-shift algorithm is maximizing the objective function

In mean-shift tracking, we are trying to find this

which means we are trying to...

We are trying to optimize this:

How do we optimize this non-linear function?

We are trying to optimize this:

$$
\begin{aligned}
\boldsymbol{x} & =\underset{\boldsymbol{x}}{\arg \max } P(\boldsymbol{x}) \\
& =\underset{\boldsymbol{x}}{\arg \max } \frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right) \\
\text { usually non-linear } & \text { non-parametric }
\end{aligned}
$$

How do we optimize this non-linear function?
compute partial derivatives ... gradient descent!

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Compute the gradient

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} \nabla k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Expand the gradient (algebra)

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} \nabla k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Expand gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right) k^{\prime}\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} \nabla k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Expand gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right) k^{\prime}\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Call the gradient of the kernel function g

$$
k^{\prime}(\cdot)=-g(\cdot)
$$

Gradient

$$
P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} c \sum_{n} \nabla k\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

Expand gradient

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right) k^{\prime}\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

change of notation (kernel-shadow pairs)

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}_{n}-\boldsymbol{x}\right) g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n}\left(\boldsymbol{x}_{n}-\boldsymbol{x}\right) g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)
$$

multiply it out

$\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} \boldsymbol{x}_{n} g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)-\frac{1}{N} 2 c \sum_{n} \boldsymbol{x} g\left(\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|^{2}\right)$
too long!
(use short hand notation)

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} \boldsymbol{x}_{n} g_{n}-\frac{1}{N} 2 c \sum_{n} \boldsymbol{x} g_{n}
$$

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} \boldsymbol{x}_{n} g_{n}-\frac{1}{N} 2 c \sum_{n} \boldsymbol{x} g_{n}
$$

collecting like terms...

$$
\nabla P(\boldsymbol{x})=\frac{1}{N} 2 c \sum_{n} g_{n}\left(\frac{\sum_{n} \boldsymbol{x}_{n} g_{n}}{\sum_{n} g_{n}}-\boldsymbol{x}\right)
$$

The mean shift is a 'step' in the direction of the gradient of the KDE
Let $\quad \boldsymbol{v}(\boldsymbol{x})=\left(\frac{\sum_{n} \boldsymbol{x}_{n} g_{n}}{\sum_{n} g_{n}}-\boldsymbol{x}\right)=\frac{\nabla P(\boldsymbol{x})}{\frac{1}{N} 2 c \sum_{n} g_{n}}$
Can interpret this to be
gradient ascent with
data dependent step size

Mean-Shift Algorithm

Initialize \boldsymbol{x}
While $v(\boldsymbol{x})>\epsilon$

1. Compute mean-shift

$$
\begin{aligned}
m(\boldsymbol{x}) & =\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right)} \\
v(\boldsymbol{x}) & =m(\boldsymbol{x})-\boldsymbol{x}
\end{aligned}
$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{x}) \quad \frac{\nabla P(\boldsymbol{x})}{\frac{1}{N} 2 c \sum_{n} g_{n}}$

Just 5 lines of code!

Everything up to now has been about distributions over samples...

Mean-shift tracker

Dealing with images

Pixels for a lattice, spatial density is the same everywhere!

What can we do?

Consider a set of points: $\quad\left\{\boldsymbol{x}_{s}\right\}_{s=1}^{S} \quad \boldsymbol{x}_{s} \in \mathcal{R}^{d}$

Associated weights:

$$
w\left(\boldsymbol{x}_{s}\right)
$$

Sample mean:

$$
m(\boldsymbol{x})=\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) w\left(\boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) w\left(\boldsymbol{x}_{s}\right)}
$$

Mean shift:

$$
m(\boldsymbol{x})-\boldsymbol{x}
$$

Mean-Shift Algorithm

(for images)
Initialize \boldsymbol{x}
While $v(\boldsymbol{x})>\epsilon$

1. Compute mean-shift

$$
\begin{aligned}
m(\boldsymbol{x}) & =\frac{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) w\left(\boldsymbol{x}_{s}\right) \boldsymbol{x}_{s}}{\sum_{s} K\left(\boldsymbol{x}, \boldsymbol{x}_{s}\right) w\left(\boldsymbol{x}_{s}\right)} \\
v(\boldsymbol{x}) & =m(\boldsymbol{x})-\boldsymbol{x}
\end{aligned}
$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{x})$

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

Finally... mean shift tracking in video!

Goal: find the best candidate location in frame 2

Frame 1

Frame 2

Use the mean shift algorithm to find the best candidate location

Non-rigid object tracking

hand tracking

Compute a descriptor for the target

Target

Search for similar descriptor in neighborhood in next frame

Target
Candidate

Compute a descriptor for the new target

Target

Search for similar descriptor in neighborhood in next frame

Target

Candidate

How do we model the target and candidate regions?

Modeling the target

M-dimensional target descriptor
 $\boldsymbol{q}=\left\{q_{1}, \ldots, q_{M}\right\}$
 (centered at target center)

Modeling the candidate

M-dimensional candidate descriptor

$$
\boldsymbol{p}(\boldsymbol{y})=\left\{p_{1}(\boldsymbol{y}), \ldots, p_{M}(\boldsymbol{y}\}\right.
$$

(centered at location \mathbf{y})
a weighted histogram at y

$$
p_{m}=C_{h} \sum_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
$$

Similarity between

the target and candidate

Distance function

$$
d(\boldsymbol{y})=\sqrt{1-\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]}
$$

Bhattacharyya Coefficient

$$
\rho(y) \equiv \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]=\sum_{m} \sqrt{p_{m}(\boldsymbol{y}) q_{m}}
$$

Just the Cosine distance between two unit vectors

$$
\rho(\boldsymbol{y})=\cos \theta_{\boldsymbol{y}}=\frac{\sqrt{\boldsymbol{p}(\boldsymbol{y})}^{\mathrm{T}} \sqrt{\boldsymbol{q}}}{\|\sqrt{\boldsymbol{p}(\boldsymbol{y})}\|\|\sqrt{\boldsymbol{q}}\|}=\sum_{m} \sqrt{p_{m}(\boldsymbol{y}) q_{m}}
$$

Now we can compute the similarity between a target and multiple candidate regions

Objective function

Assuming a good initial guess

$$
\rho\left[\boldsymbol{p}\left(\boldsymbol{y}_{0}+\boldsymbol{y}\right), \boldsymbol{q}\right]
$$

Linearize around the initial guess (Taylor series expansion)

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{1}{2} \sum_{m} p_{m}(\boldsymbol{y}) \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}}
$$

Linearized objective

$$
\begin{aligned}
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] & \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{1}{2} \sum_{m} p_{m}(\boldsymbol{y}) \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \\
p_{m} & =C_{h} \sum_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right] \begin{array}{c}
\text { Remember } \\
\text { definition of this? }
\end{array}
\end{aligned}
$$

Fully expanded

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{1}{2} \sum_{m}\left\{C_{h} \sum_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]\right\} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}}
$$

Fully expanded linearized objective

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{1}{2} \sum_{m}\left\{C_{h} \sum_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]\right\} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}}
$$

Moving terms around...

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \underset{\text { Does not depend on unknown } \mathbf{y}}{\frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}}+\underbrace{\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right)}_{\text {Weighted kernel density estimate }}
$$

where $\quad w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]$
Weight is bigger when $q_{m}>p_{m}\left(\boldsymbol{y}_{0}\right)$

OK, why are we doing all this math?

We want to maximize this

$\max \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$ \boldsymbol{y}

We want to maximize this

$\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

Fully expanded linearized objective

$$
\begin{gathered}
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \\
\text { where } w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
\end{gathered}
$$

We want to maximize this

$\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

Fully expanded linearized objective

$$
\begin{aligned}
& \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{\text {doesnt depend o o uneneowny }} \sqrt{p_{m}\left(\boldsymbol{y}_{\boldsymbol{y}}\right) q_{m}}+\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right) \\
& \text { where } w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
\end{aligned}
$$

We want to maximize this

$\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$ \boldsymbol{y}

only need to maximize this!
Fully expanded linearized objective

$$
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \underset{\text { doesn't depend on unknown } \mathbf{y}}{\frac{1}{2} \sum_{m} \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\left(\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right)\right) .\left(\frac{1}{h}\right) .}
$$

$$
\text { where } \quad w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
$$

We want to maximize this

$\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

Fully expanded linearized objective

$$
\begin{aligned}
\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] & \approx \frac{\frac{1}{2} \sum \sqrt{p_{m}\left(\boldsymbol{y}_{0}\right) q_{m}}+\frac{\boldsymbol{C}_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right.}{\text { doessit deperend on unkrowom } \boldsymbol{y}} \\
& \text { where } w_{n}=\sum_{m} \sqrt{\frac{q_{m}}{p_{m}\left(\boldsymbol{y}_{0}\right)}} \delta\left[b\left(\boldsymbol{x}_{n}\right)-m\right]
\end{aligned}
$$

what can we use to solve this weighted KDE?
Mean Shift Algorithm!

$$
\frac{C_{h}}{2} \sum_{n} w_{n} k\left(\left\|\frac{\boldsymbol{y}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right)
$$

the new sample of mean of this KDE is

$$
\underset{\substack{\text { (new candidate } \\ \text { location) }}}{\boldsymbol{y}_{1}}=\frac{\sum_{n} \boldsymbol{x}_{n} w_{n} g\left(\left\|\frac{\boldsymbol{y}_{0}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right)}{\sum_{n} w_{n} g\left(\left\|\frac{\boldsymbol{y}_{0}-\boldsymbol{x}_{n}}{h}\right\|^{2}\right)}
$$

Mean-Shift Object Tracking

For each frame:

1. Initialize location \boldsymbol{y}_{0}

Compute \boldsymbol{q}
Compute $\boldsymbol{p}\left(\boldsymbol{y}_{0}\right)$
2. Derive weights w_{n}
3. Shift to new candidate location (mean shift) \boldsymbol{y}_{1}
4. Compute $\boldsymbol{p}\left(\boldsymbol{y}_{1}\right)$
5. If $\left\|\boldsymbol{y}_{0}-\boldsymbol{y}_{1}\right\|<\epsilon$ return

Otherwise $\quad \boldsymbol{y}_{0} \leftarrow \boldsymbol{y}_{1}$ and go back to 2

Compute a descriptor for the target

Target
\boldsymbol{q}

Search for similar descriptor in neighborhood in next frame

Target
Candidate

$$
\max _{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]
$$

Compute a descriptor for the new target

Target
\boldsymbol{q}

Search for similar descriptor in neighborhood in next frame

Target
Candidate
$\max \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

Modern trackers

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

